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ABSTRACT 
The use of IR methodology in the evaluation of recommender sys-
tems has become common practice in recent years. IR metrics have 
been found however to be strongly biased towards rewarding al-
gorithms that recommend popular items –the same bias that state 
of the art recommendation algorithms display. Recent research has 
confirmed and measured such biases, and proposed methods to 
avoid them. The fundamental question remains open though 
whether popularity is really a bias we should avoid or not; whether 
it could be a useful and reliable signal in recommendation, or it 
may be unfairly rewarded by the experimental biases. We address 
this question at a formal level by identifying and modeling the con-
ditions that can determine the answer, in terms of dependencies 
between key random variables, involving item rating, discovery 
and relevance. We find conditions that guarantee popularity to be 
effective or quite the opposite, and for the measured metric values 
to reflect a true effectiveness, or qualitatively deviate from it. We 
exemplify and confirm the theoretical findings with empirical re-
sults. We build a crowdsourced dataset devoid of the usual biases 
displayed by common publicly available data, in which we illus-
trate contradictions between the accuracy that would be measured 
in a common biased offline experimental setting, and the actual ac-
curacy that can be measured with unbiased observations. 
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1 INTRODUCTION 
The use of IR methodologies and metrics for the evaluation of rec-
ommender systems has spread in recent years and is becoming 
common practice in the area, under the understanding of recom-
mendation as a ranking task [14]. Yet IR metrics have been found 
to be strongly biased towards rewarding algorithms that recom-
mend popular items, that is, items that many people know, like, 
rate or interact with [4,21,35]. At the same time, state of the art 
recommendation algorithms have similarly been found to display 
a marked bias towards recommending items most people like [21]. 

This may naturally cast doubt on the reliability of common exper-
iments and the outcome on which the best algorithms really are.  

This problem has been of no particular concern to IR method-
ology, as popularity biases do not occur, or not in such a dramatic 
way, in traditional search and IR tasks. The popularity bias is so 
strong in common datasets for recommender system evaluation 
that even a pure and simple popularity ranking appears to achieve 
suboptimal but non-negligible recommendation accuracy com-
pared to the best state of the art personalized algorithms [14]. And 
it is in fact not necessarily trivial to outperform, for instance, in 
high rating sparsity conditions. Research has therefore been re-
cently undertaken addressing the issue, so far mainly focusing on 
confirming and measuring the popularity biases, and removing 
them [4,21,34,35]. But a basic question remains yet unanswered: 
is the popularity bias actually something we should get rid of at 
all? If recommending popular items happened to be the right thing 
to do, then should not both the evaluation metrics and the recom-
mendation algorithms rightfully favor them? 

The majority opinion is indeed useful information for people 
–it is a simple yet fair and useful default criterion we keep in sight 
most of the time through our human decisions, even when we do 
not follow it. And we in fact often do adopt it, for instance, in the 
absence of enough evidence to form one’s own personal choice, 
or as guidance to reduce the cost of building a decision from 
scratch, or as a social learning mechanism [3]. From an application 
point of view, a recommendation based on the choices of many 
can be acceptable in many circumstances [16] –and requires min-
imum development skills and maintenance costs. It is actually a 
widespread approach that many applications display in the form 
of top charts, best-selling lists, average people’s ratings, etc. Even 
in the presence of a full-fledged personalized recommender sys-
tem, majority listings are still a good resort for new or cold users.  

The effectiveness of majority taste makes indeed statistical 
sense: the items that many people like (according to the records of 
observed user activity) are liked by many people (in test data for 
evaluation) [19]. Yet from an experimental perspective, if the obser-
vations are somehow biased, and the bias is consistent across train-
ing to test data, the majority bias in recommendation might be ac-
curately guessing where the observations have been placed by the 
experimenter, rather than where true user tastes are being actually 
most satisfied. Moreover, the majority signal might be contami-
nated by trends that deviate from actual user appreciation [5,29]. 
Recent studies show that majority formation involves a degree of 
chance, by which different outcomes are possible as to what choices 
make it to the top of popularity [31]. Crowd dynamics are moreover 
known to be exposed to external and internal influence and bias 
factors [26,27,29], such as mass media [7], marketing, opinion man-
agement [6], algorithmic bias [28], or social conformity [13]. 

The issue is therefore open whether or not popularity is a truly 
effective ingredient to achieve accurate recommendations, to 
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what extent and in what cases, and whether we are measuring it 
properly. We address the question by considering, analyzing and 
comparing two views on IR metrics: biased and unbiased. The for-
mer represents what is measured in common offline experiments 
in the literature, where relevance information is missing not at 
random (MNAR) [23,24,25,34,35], and the latter represents the true 
metric value that would be obtained if the missing information 
became available.  

We do this at both a theoretical and an empirical level. At the 
analytical level, we formulate a probabilistic expression of the 
problem. Starting by a revised probability ranking principle [30] 
for recommender systems, we analyze popularity-based recom-
mendation by comparison to the optimal ranking. We find that the 
effectiveness or ineffectiveness of popularity depends on the inter-
play of three main variables: item relevance, item discovery by us-
ers, and the decision by users to interact with discovered items. We 
identify the key probabilistic dependencies among these factors 
that determine the outcome for popularity, and we characterize a 
set of trends defined by different independence assumptions, each 
resulting in a particular pattern of behavior for popularity. We 
back our theoretical findings with empirical observations with a 
dataset we build on a crowdsourcing platform, in which we remove 
several of the common biases of publicly available datasets.  

Among other findings, we prove and illustrate qualitative con-
tradictions between the accuracy that is measured in a common 
offline experimental setting, and the actual accuracy that can be 
estimated with unbiased observations. We identify conditions that 
guarantee popularity to be a safe element in recommendation, and 
we characterize and exemplify situations where, on the contrary, 
popularity can be a totally misleading direction to follow, to the 
point of leading to worse effectiveness than random recommenda-
tion. We furthermore find that the average rating can be more ef-
fective than the number of ratings as a trend to follow in recom-
mendation in many cases, contrarily to what the biased metric 
values suggest –which represent what the literature commonly 
reports [14,21]. Finally, we look at the signification our findings 
can have in personalized collaborative filtering algorithms. 

2 POPULARITY IN RECOMMENDATION 
Several authors have recently paid attention to the role and effects 
of popularity in recommender systems. Fleder and Hosanagar [15] 
observed the concentration effect of the recommendation feed-
back loop. Cremonesi et al. [14] were among the first to point at 
and analyze the fair results of popularity in the top-k recommen-
dation task. Fig. 1 illustrates a typical observation in line with 
those findings, on two popular public datasets [17,20] (algorithm 
configuration and details are the same as in [9]), where popularity 
performs about half as well as the personalized algorithms (kNN 
[14] and matrix factorization [20]). Cremonesi et al. furthermore 
observed that even though recommendation by average rating 
value achieves worse accuracy than ranking items by their num-
ber of ratings (as is the case in Fig. 1), the comparison gets re-
versed when the top few most popular items are removed from 
the data. An explanation for such different outcomes was yet to 
be given, and will hopefully be found in the present paper. 

Steck [34,35] raised awareness on the fact that ratings are 
missing not at random [23,24] and subject to biases affecting both 
the input for algorithms and the data for evaluation. He proposed 
metrics and algorithmic corrections to better cope with popular-
ity. Bellogín et al. [4] studied the strong popularity biases that sur-
face in IR evaluation methodologies when applied to recommen-
dation, and proposed further experimental methods to neutralize  

the biases. Jannach et al. [21] verified and measured the correla-
tion with popularity observed in common state of the art algo-
rithms, and proposed approaches to counter it. In our own prior 
work [9] we formalized the popularity bias as an intrinsic trend in 
memory-based collaborative filtering. Earlier on we studied the 
effect of social mouth-to-mouth on the raise of popularity distri-
butions and the positive or negative effect on the accuracy of pop-
ularity-based recommendation [8]. 

However, whether popularity is actually a good or bad feature 
to have –and whether its measured accuracy is reliable or not– is 
an implicit question that has not been directly explained yet. One 
obvious, negative answer has been given considering that popular-
ity is the antithesis of novelty, a key ingredient in most cases for 
recommendations to be useful [1,11,12]. But from a broad perspec-
tive, this answer is partial, and does not refute the usefulness of 
some degree of popularity. While lack of novelty is an obvious 
drawback of popularity, the effect of popularity on pure accuracy 
should be properly understood. Even avoiding the head of the pop-
ularity distribution, even anywhere in the long tail, some items are 
more popular than others, and we need to understand the differ-
ence when we settle for recommendation at one precise point or 
the other on the popularity curve. Furthermore, since top-perform-
ing recommendation algorithms are strongly biased towards pop-
ular items, the question concerns state of the art methods as well, 
and any findings on the issue would help better understand and 
properly compare the effectiveness of personalized algorithms. 

3 THEORETICAL FORMULATION 
We start our study by setting out a mathematical formalization of 
the relevant involved elements. We first settle some definitions, a 
general framing for the recommendation task, and some formal 
notation to be used in the rest of the paper. 

3.1 Preliminaries 
The recommendation task [3] considers a set of users 𝒰, a set of 
items ℐ, and a set of observed rating values for a subset of 𝒰 × ℐ. 
We need not make any specific assumption about what ratings ex-
actly consist of: explicit scores, implicit interaction records, etc.; it 
is sufficient for our purposes to consider they reflect some evidence 
of a positive or non-positive preference by the user for the rated 
item. The ratings are supplied as input (training data) to recom-
mendation algorithms, which return a ranking of items for each 
user. In offline experiments, a subset of the available ratings is held 
out as test data for evaluation, and the rest of ratings are fed as 
input to the algorithms under evaluation [32]. In online evaluation, 
all available ratings are potentially used as input, and user feedback 
in response to recommendations in a live system is taken as test 
data. In both settings, test ratings are used as relevance judgments 
to compute the evaluation metrics of interest. 
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Figure 1: Typical offline experimental results for non-per-
sonalized popularity-based recommendation compared to 
personalized algorithms on two public datasets.  
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3.1.1 Popularity-Based Recommendation. “Popular” generally 
means what many people like or know [21]. In the recommender 
systems literature, popularity is commonly defined as the number 
of users who have rated (who have been observed interacting 
with) an item, regardless of whether the interaction reflected pos-
itive or negative preference [4,14,21]. We find it more meaningful 
to consider an alternative refinement that only counts the inter-
actions evidencing a positive preference (as in [9,34]). In usual da-
tasets this makes no noticeable difference, but it can be proved 
that the total number of votes is never better than the number of 
positive votes as a signal for recommendation, whereby we shall 
focus on the latter definition.  

Another sensible and common notion in the scope of popular-
ity is the average rating value [14,21]. We shall use a simplified –
and empirically equivalent in all our experiments– binarized def-
inition of average rating, as the ratio of users who liked an item, 
which is better suited to a probabilistic analysis. The average rat-
ing tends to display lower empirical effectiveness than popularity 
in common datasets, though it has been show to outperform pop-
ularity when, for instance, the few top most popular items are re-
moved from the data, as reported by Cremonesi et al. [14].  

Popularity notions can be used for recommendation by just de-
livering the popularity ranking to all users. Formally, we shall de-
note by 𝑝𝑜𝑝(𝑖)  and 𝑎𝑣𝑔(𝑖) the ranking functions of popularity 
and average rating, respectively, for 𝑖 ∈ ℐ. Given a data split, we 
define 𝑝𝑜𝑝(𝑖) = |𝑖𝑡𝑟𝑎𝑖𝑛

+ | as the number of positive training ratings 
the item has, and 𝑎𝑣𝑔(𝑖) = |𝑖𝑡𝑟𝑎𝑖𝑛

+ | |𝑖𝑡𝑟𝑎𝑖𝑛|⁄  as the ratio of positive 
training ratings. 

3.1.2 Observed vs. True Accuracy. Ranking-based recommenda-
tion accuracy metrics such as precision, recall, nDCG, MAP, MRR, 
etc., measure how well a recommendation ranks the relevant items 
above non-relevant ones. In the recommendation context, an item 
is considered relevant for a user if a positive rating by the user for 
the item is available in the test data. Such relevance knowledge is 
however generally incomplete –this is particularly true in recom-
mender system experiments, where most of the user preferences 
are unknown, by definition of the recommendation task [2]. The 
difference between the metric value we can measure in common 
experiments, and the true metric value we would compute if we 
had full relevance knowledge, is a key distinction in our study.  

3.1.3 Data Split Protocol. Our analysis shall assume an offline 
experimental design based on a random rating data split with a 
given ratio 𝜌 ∈ (0,1) of training data. We consider a common data 
partition procedure which consists of iterating over each of the 
available ratings in the dataset at hand, assigning it to the training 
or test subset with probability 𝜌 and 1 − 𝜌 respectively. As in the 
most usual settings, we consider a recommendation task defini-
tion where the system should not recommend items to users who 
have already rated them (in the input training data) [2]. The data 
split is not necessary when we consider true metric values, which 
assume full (or at least unbiased) relevance knowledge: all ratings 
can be supplied as input to the algorithm (as if 𝜌 = 1), and the 
metrics use extra (unrated) relevance information obtained some-
how. In our theoretical analysis we will abstract ourselves from 
the problem of obtaining this relevance knowledge, and we will 
later describe how we manage to get it in our experiments. 

3.1.4 User-Item Random Variables. We shall formalize key el-
ements involved in the problem as random variables, in order to 

reason in terms of probabilities and expected values. First, we de-
fine the random variable 𝑟𝑎𝑡𝑒𝑑: 𝒰 × ℐ → {0,1} over the set of user-
item pairs as 𝑟𝑎𝑡𝑒𝑑 = 1 if a rating by the user for the item is avail-
able in the dataset and 0 otherwise. Given a rating split, we simi-
larly define the variables 𝑡𝑟𝑎𝑖𝑛 and 𝑡𝑒𝑠𝑡 on user-item pairs as tak-
ing value 1 if 𝑟𝑎𝑡𝑒𝑑 = 1 and the rating was assigned to the train-
ing or test partition respectively, and 0 otherwise. Similarly, we 
define 𝑟𝑒𝑙: 𝒰 × ℐ → {0,1} as 𝑟𝑒𝑙 = 1 if the user likes the item (re-
gardless of the presence or absence of a rating), and 0 otherwise. 
Throughout the paper we will use the abbreviation 𝑝(𝑟𝑎𝑡𝑒𝑑) , 
𝑝(𝑟𝑒𝑙), etc., for 𝑝(𝑟𝑎𝑡𝑒𝑑 = 1), 𝑝(𝑟𝑒𝑙 = 1), and so forth. Now con-
sidering a random variable 𝐼: 𝒰 × ℐ → ℐ defined as the item in a 
user-item pair, we can handle conditional probabilities such as 
𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖), 𝑝(𝑟𝑒𝑙|𝑖), and so on, for 𝑖 ∈ ℐ –where 𝑖 shall stand as 
an abbreviation of 𝐼 = 𝑖 . The probability 𝑝(𝑟𝑒𝑙|𝑖) , for instance, 
represents the ratio of users who like item 𝑖.  

Using these random variables and the definitions of section 
3.1.1 above, we have 𝑝𝑜𝑝(𝑖) ∝ |𝑖𝑡𝑟𝑎𝑖𝑛

+ | |𝒰|⁄ = 𝑝(𝑡𝑟𝑎𝑖𝑛, 𝑟𝑒𝑙|𝑖)  and 
𝑎𝑣𝑔(𝑖) = 𝑝(𝑟𝑒𝑙|𝑡𝑟𝑎𝑖𝑛, 𝑖). Since 𝑝(𝑡𝑟𝑎𝑖𝑛|¬𝑟𝑎𝑡𝑒𝑑, 𝑖) = 0 and, in the 
random split procedure described earlier in section 3.1.3, the prob-
ability for a rating to be sampled for training or test is independent 
from both the item and the rating value, and is equal to the split 
ratio 𝜌, we have:  

𝑝𝑜𝑝(𝑖) ∝ 𝑝(𝑟𝑎𝑡𝑒𝑑, 𝑟𝑒𝑙|𝑖) 𝑎𝑣𝑔(𝑖) ∼ 𝑝(𝑟𝑒𝑙|𝑟𝑎𝑡𝑒𝑑, 𝑖) 

We shall use the popularity and average rating ranking func-
tions in this form in the rest of the paper. 

3.2 Expected Precision 
We choose precision for an accuracy metric, as a representative yet 
tractable option for theoretical analysis. Moreover and for the same 
reason we shall take 𝑃@1. In the experiments of section 6 we will 
see that our analysis and results generalize well empirically to other 
accuracy metrics and common deeper cutoffs. Given a recommen-
dation 𝑅 = 〈𝑅1, 𝑅2, … , 𝑅𝑛〉, 𝑃@1 is a binary value that is equal to 1 
if the target user likes the top ranked item 𝑅1, and 0 if she does not. 
This makes it easier to reason about the expected value of this met-
ric. As a binary function, the expectation of 𝑃@1 for a given recom-
mendation 𝑅  is 𝔼[𝑃@1|𝑅] = 𝑝(𝑃@1 = 1|𝑅) = 𝑝(𝑟𝑒𝑙|𝑅1) . As we 
have stressed in section 3.1.2, we shall distinguish between observed 
precision, which we shall denote by the symbol �̂�, and true precision, 
which we denote as 𝑃. We have 𝑃@1 = 1 iff the target user likes 
the top-ranked item, whereas �̂�@1 = 1 iff the user likes the top 
item and a rating by the user for the item is present in the test set. 
Therefore, 𝔼[�̂�@1|𝑅] = 𝑝(𝑟𝑒𝑙, 𝑡𝑒𝑠𝑡|𝑅1) for observed precision. 

Now we need to be more precise with the computation of the 
metrics: in fact 𝑃@1 = 1 iff the first ranked recommendable item in 
𝑅 is relevant (and analogously for �̂�). Let this item be 𝑅𝑘, ranked at 
the 𝑘-th position of 𝑅. As mentioned in section 3.1.3, recommend-
able means that 𝑅𝑘 does not have a training rating by the target 
user, and being the first means that all the items 𝑅1, 𝑅2,…, 𝑅𝑘−1 
above 𝑅𝑘 are not recommendable because they do have a training 
rating. If we marginalize 𝑝(𝑃@1 = 1|𝑅)  and 𝑝(�̂�@1 = 1|𝑅)  by 
the possibility that the 𝑘-th item is the first recommendable, and 
we make the mild assumption that whether two items are rated or 
not by some user are mutually independent events (whereby so is 
the 𝑡𝑟𝑎𝑖𝑛 event, since ratings are independently sampled in the 
random split as described in section 3.1.3), we have: 



  
 

 

 

𝔼[𝑃@1|𝑅] ∼ ∑ 𝑝(𝑟𝑒𝑙, ¬𝑡𝑟𝑎𝑖𝑛|𝑅𝑘) ∏ 𝑝(𝑡𝑟𝑎𝑖𝑛|𝑅𝑗)
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𝔼[�̂�@1|𝑅] ∼ ∑ 𝑝(𝑟𝑒𝑙, 𝑡𝑒𝑠𝑡|𝑅𝑘) ∏ 𝑝(𝑡𝑟𝑎𝑖𝑛|𝑅𝑗)

𝑘−1

𝑗=1

𝑛
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where in equation 2 we can remove the condition ¬𝑡𝑟𝑎𝑖𝑛  in 
𝑝(𝑟𝑒𝑙, 𝑡𝑒𝑠𝑡, ¬𝑡𝑟𝑎𝑖𝑛|𝑅𝑘) as it is redundant: if a rating is present in 
the test set it cannot be present in the training set. 

3.3 Optimal Recommendation 
We can now set forth a first result on the optimal rankings for 
expected observed and true precisions. 

Lemma 1 – Assuming pairwise item rating independence, the op-
timal recommendation that maximizes the (true) 𝑃@1 expectation 
under a random rating split ranks items 𝑖 ∈ ℐ by non-increasing 
value of: 

𝑓(𝑖) = 𝑝(𝑟𝑒𝑙|¬𝑡𝑟𝑎𝑖𝑛, 𝑖) = 𝑝(𝑟𝑒𝑙|𝑖)
1 − 𝜌 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑟𝑒𝑙, 𝑖)

1 − 𝜌 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖)
 (3) 

Under the same assumptions, the optimal recommendation that 
maximizes the expected (observed) �̂�@1 ranks items by non-in-
creasing value of: 

𝑓(𝑖) =
𝑝(𝑟𝑒𝑙, 𝑡𝑒𝑠𝑡|𝑖)

𝑝(¬𝑡𝑟𝑎𝑖𝑛|𝑖)
∝ 𝑝(𝑟𝑒𝑙|𝑖)

𝑝(𝑟𝑎𝑡𝑒𝑑|𝑟𝑒𝑙, 𝑖)

1 − 𝜌 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖)
 (4) 

Proof  In order to show that the above rankings maximize the 
corresponding precision, it suffices to show that a consecutive 
swap against 𝑓  or 𝑓  in a ranking produces a smaller value for 
𝔼[𝑃@1|𝑅] or 𝔼[�̂�@1|𝑅] respectively [10]. Given that any ranking 
can be generated by a sequence of pairwise counter-order swaps 
on any other ranking (as per e.g. the proof of correction of bubble 
sort), we would have proven our point. For true precision, let 𝑅 be 
some ranking so that 𝑓(𝑅𝑘) ≥ 𝑓(𝑅𝑘+1) for some 𝑘, and let us con-
sider a ranking 𝑅′ consisting of swapping 𝑅𝑘 and 𝑅𝑘+1 in 𝑅. Us-
ing equation 2 it is easy to see that, by trivial algebraic cancella-
tion and rearrangement of terms, we have: 

𝔼[𝑃@1|𝑅] ≥ 𝔼[𝑃@1|𝑅′] 

⇔
𝑝(𝑟𝑒𝑙, ¬𝑡𝑟𝑎𝑖𝑛|𝑅𝑘)

1 − 𝑝(𝑡𝑟𝑎𝑖𝑛|𝑅𝑘)
≥

𝑝(𝑟𝑒𝑙, ¬𝑡𝑟𝑎𝑖𝑛|𝑅𝑘+1)

1 − 𝑝(𝑡𝑟𝑎𝑖𝑛|𝑅𝑘+1)
⇔ 𝑓(𝑅𝑘) ≥ 𝑓(𝑅𝑘+1) 

Which is true by description of 𝑅. That is, swapping 𝑅𝑘 and 𝑅𝑘+1 
decreases 𝔼[𝑃@1|𝑅]. And an analogous reasoning proves the cor-
responding statement for observed precision. 

The right-side form of 𝑓 and 𝑓 in equations 3 and 4 is trivially 
obtained by applying 𝑝(𝑡𝑟𝑎𝑖𝑛|𝑖) = 𝜌 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖)  and 𝑝(𝑡𝑒𝑠𝑡|𝑖) =
(1 − 𝜌) 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖) as explained in section 3.1.4.  

4 RELEVANCE BIAS IN RATING 
DISTRIBUTION 

We now analyze how the relation between relevance and rating 
can determine the effectiveness of popularity. We do so by exam-
ining how the popularity and average rating rankings relate to the 
optimal ranking, and random recommendation. 

We start by considering two extreme cases in the relation be-
tween rating and relevance: a) the probability that a user rates an 
item depends only on relevance; and b) the probability that a user 
rates an item is independent from relevance. These two conditions 
can be expressed as conditional independence assumptions be-
tween rating, relevance and items: a) 𝑟𝑎𝑡𝑒𝑑 ⊥ 𝑖 | 𝑟𝑒𝑙 and 𝑟𝑎𝑡𝑒𝑑 ⊥

𝑖 | ¬𝑟𝑒𝑙, and b) 𝑟𝑎𝑡𝑒𝑑 ⊥ 𝑟𝑒𝑙 | 𝑖, respectively. We analyze the conse-
quences of each of these conditions in the next subsections. The 
analytic findings we will reach therein are summarized in Table 1. 

4.1 Conditional Item Independence 
The independence assumption means 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑟𝑒𝑙, 𝑖) ∼

𝑝(𝑟𝑎𝑡𝑒𝑑|𝑟𝑒𝑙)  and 𝑝(𝑟𝑎𝑡𝑒𝑑|¬𝑟𝑒𝑙, 𝑖) ∼ 𝑝(𝑟𝑎𝑡𝑒𝑑|¬𝑟𝑒𝑙).  Applying 
this to equation 3, we get that the optimal ranking for true preci-
sion is given by: 

𝑓(𝑖) ∼
(1 − 𝜌 𝑎) 𝑝(𝑟𝑒𝑙|𝑖)

1 − 𝜌 𝑏 + 𝜌 (𝑏 − 𝑎) 𝑝(𝑟𝑒𝑙|𝑖)
∝ 𝑝(𝑟𝑒𝑙|𝑖) 

with constants 𝑎 = 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑟𝑒𝑙) , 𝑏 = 𝑝(𝑟𝑎𝑡𝑒𝑑|¬𝑟𝑒𝑙) . The rank 
equivalence holds because 𝑥 (𝑐1 + 𝑐2 𝑥)⁄  is a monotonically in-
creasing function of 𝑥 as long as 𝑐1 > 0, whatever the value of 𝑐2. 

For observed precision, we similarly get:  

𝑓(𝑖) ∝
𝑎 𝑝(𝑟𝑒𝑙|𝑖)

1 − 𝜌 𝑏 + 𝜌 (𝑏 − 𝑎) 𝑝(𝑟𝑒𝑙|𝑖)
∝ 𝑝(𝑟𝑒𝑙|𝑖) 

where 𝑎 and 𝑏 are defined as before. We thus find, in particular, 
that if the rating probability depends only on relevance, then ob-
served and true precision are consistent as to what the optimal 
recommendation is. 

On the other hand, with the independence assumption at hand, 
the ranking functions for popularity and average rating become:  

𝑝𝑜𝑝(𝑖) ∼ 𝑎 𝑝(𝑟𝑒𝑙|𝑖) ∝ 𝑓(𝑖) ∝ 𝑓(𝑖) 

𝑎𝑣𝑔(𝑖) ∼
𝑎 𝑝(𝑟𝑒𝑙|𝑖)

𝑏 + (𝑎 − 𝑏) 𝑝(𝑟𝑒𝑙|𝑖)
∝ 𝑝(𝑟𝑒𝑙|𝑖) ∝ 𝑓(𝑖) ∝ 𝑓(𝑖) 

We thus come to: 

Conclusion 1 – If the probability of rating depends just on 
whether the item is liked, then 1) the expected observed and true 
precision agree, and 2) both popularity and average rating produce 
the optimal non-personalized recommendation. 

Note that the scope of this finding, and all the ones that shall 
follow, is non-personalized: popularity, for instance, ranks items 

Table 1: Summary of cases. “Optimal” is meant in the scope of non-personalized recommendations. We indicate the 
conclusion numbering corresponding to each case, and the figure(s) where it is shown or tested. 

 Rating independence 
assumptions/cases 

Corresponding assumptions  
on rating decision + discovery  Subcases 

# con-
clusion  

 Popularity Average rating 
 Fig. 𝔼[�̂�@1] 𝔼[𝑃@1] 𝔼[�̂�@1] 𝔼[𝑃@1] 

 Item-independent 
𝑟𝑎𝑡𝑒𝑑 ⊥ 𝑖 | 𝑟𝑒𝑙 

𝑟𝑎𝑡𝑒𝑑 ⊥ 𝑖 | 𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙 𝑠𝑒𝑒𝑛 ⊥ 𝑖 | 𝑟𝑒𝑙 – 1 5d 
    

  Optimal  
 
Relevance-independent  
𝑟𝑎𝑡𝑒𝑑 ⊥ 𝑟𝑒𝑙 | 𝑖 

𝑟𝑎𝑡𝑒𝑑 ⊥ 𝑟𝑒𝑙 | 𝑠𝑒𝑒𝑛, 𝑖 𝑠𝑒𝑒𝑛 ⊥ 𝑟𝑒𝑙 | 𝑖 
a.  𝑝(𝑟𝑒𝑙|𝑖) steeper enough than 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖) 

2+3 
5a     

 b.  𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖) steeper enough than 𝑝(𝑟𝑒𝑙|𝑖) –  Random  
 c.  Neither dominates 5c  Better   
 
No assumption – – 4 3, 5b  

than 
random 

Almost 
random 

Better 
than pop 

 



  
 

  

by 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑟𝑒𝑙, 𝑖) , but not specifically by 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑟𝑒𝑙, 𝑖, 𝑢)  for 
each user –and analogously for the average rating. Hence opti-
mality is in those precise terms: without having the ranking de-
pend on the user, thus applying lemma 1 in a non-personalized 
version. Note also that by optimal we shall always be meaning in 
expectation (of precision) with respect to the random data split 
and the detailed placement of ratings in the user-item matrix. 

4.2 Conditional Relevance Independence 
The relevance independence assumption means 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑟𝑒𝑙, 𝑖) ∼

𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖). Under this assumption, the optimal rankings obtained 
in equations 3 and 4 become: 

𝑓(𝑖) ∼ 𝑝(𝑟𝑒𝑙|𝑖)
1 − 𝜌 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖)

1 − 𝜌 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖)
= 𝑝(𝑟𝑒𝑙|𝑖) 

𝑓(𝑖) ∼ 𝑝(𝑟𝑒𝑙|𝑖)
𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖)

1 − 𝜌 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖)
∝ 𝑝(𝑟𝑒𝑙|𝑖) 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖) 

where the final rank equivalence for 𝑓 holds because 𝑥 (1 − 𝜌 𝑥)⁄  
is monotonically increasing in 𝑥 and almost equal to the identity 
function for small values of 𝑥. Observed and true precision are 
thus not necessarily consistent when the rating probability de-
pends not just on relevance. 

The popularity rankings, on their side, become:  

𝑝𝑜𝑝(𝑖) ∝ 𝑝(𝑟𝑒𝑙, 𝑟𝑎𝑡𝑒𝑑|𝑖) = 𝑝(𝑟𝑒𝑙|𝑖) 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖) ∝ 𝑓(𝑖) 

𝑎𝑣𝑔(𝑖) ∝ 𝑝(𝑟𝑒𝑙|𝑟𝑎𝑡𝑒𝑑, 𝑖) = 𝑝(𝑟𝑒𝑙|𝑖) ∝ 𝑓(𝑖) 

whereby popularity and average rating would match the optimal 
ranking for observed and true precision, respectively. We there-
fore find: 

Conclusion 2 – If the probability of rating does not depend on 
relevance, then the average rating is optimal in true precision, 
whereas popularity is optimal in observed precision. 

We can draw further conclusions depending on which distri-
bution, relevance or rating, is steeper. If the relevance distribution 
is steeper enough than the rating distribution, then 𝑝(𝑟𝑒𝑙|𝑖) 
would dominate over 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖) when multiplying them, and we 
would have approximately 𝑓(𝑖) ∝ 𝑝(𝑟𝑒𝑙|𝑖) 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖) ∝ 𝑝(𝑟𝑒𝑙|𝑖) 
∝ 𝑓(𝑖). If on the contrary the rating distribution is steeper enough 
than relevance, we would have 𝑓(𝑖)  ∝  𝑝(𝑟𝑒𝑙|𝑖) 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖)  ∝

𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖) , whereby 𝑝𝑜𝑝(𝑖)  would be totally unrelated to 𝑓(𝑖)  
–hence equivalent to random recommendation–, and same for 
𝑎𝑣𝑔(𝑖) with respect to 𝑓(𝑖). We thus conclude:  

Conclusion 3 – If the probability of rating does not depend on 
relevance, we have: a) if relevance is steeper enough than rating, 
true and observed precision come close to agree, whereby popularity 
and the average rating approximate the optimal in both metrics; b) 
if rating dominates over relevance, popularity and the average rat-
ing tend to become equivalent to random recommendation in true 
and observed precision, respectively; and c) we can further conclude 
that in the average case where neither rating nor relevance are 
clearly steeper than the other, popularity and the average rating 
can be expected to be not optimal but still better than random rec-
ommendation in true and observed precision, respectively.  

We hence find a contradiction between observed and true pre-
cision when rating and relevance are independent, unless the rel-
evance distribution is very much steeper than the rating distribu-
tion. If the latter is very skewed, the contradiction can become 
extreme: observed and true precision report opposite outcomes. 

4.3 General Case 
The simplifying assumptions considered above are not meant to 
reflect situations that would strictly occur in real scenarios: they 
just serve the purpose of identifying and understanding funda-
mental factors that make part, as mixed trends, of real situations. 
Moreover, we will show later that it is actually possible to enforce 
them in a controlled experiment. 

However, in the general case, with no particular independence 
assumptions, any outcome is actually possible. It is easy to build 
simple toy examples where popularity and the average rating are 
better or worse than each other and/or random recommendation, 
either in terms of true or observed precision. We may nonetheless 
expect, based on the findings of the previous subsections, that to 
the extent that rating dependence on either relevance or items 
(while coexisting) dominate one over the other, the results will be 
closer to the corresponding trends characterized so far.  

We may also realize that since 𝑓(𝑖) = 𝑝𝑜𝑝(𝑖) (1 −⁄ 𝜌 𝑝(𝑟𝑎𝑡𝑒𝑑| 
𝑖)), popularity will tend to get a favorable assessment in observed 
precision –unless the items with the highest number of relevant 
ratings have a low total number of ratings, which is quite un-
likely– whereas the average rating does not have such a direct 
relation to observed precision. We may hence expect to see the 
average rating lagging behind popularity in evaluations such as 
the one shown in Fig. 1, which need not necessarily reflect the 
actual situation if true precision could be measured. 

We seek further insights in the next section, by analyzing 
where the probabilistic dependences between rating, relevance, 
and items may arise from. 

5 THE INTERPLAY OF RATING, DISCOVERY 
AND RELEVANCE 

In order to better understand how rating may come to depend on 
relevance and individual items, we can consider the basic ques-
tion: how does a rating come to existence? For a rating to be gen-
erated, the user must first of all discover the item at hand some-
how. Then, she needs to examine, consume, buy, use (whatever 
applies in the application domain) the item, in order to form an 
opinion about it; and finally, she needs to decide to enter a rating. 
For simplicity, we shall collapse consumption and rating as a sin-
gle event (as is in fact the case for systems working with implicit 
user preference feedback), which is sufficient for our analysis.  

The characterization of popularity distributions can be thus 
decomposed into (and explained by) the discovery and rating de-
cision distributions that give rise to the rating distribution. To re-
flect this view, let 𝑠𝑒𝑒𝑛: 𝒰 × ℐ → {0,1} be a binary random varia-
ble that takes value 1 if the user knows the item exists, and 0 oth-
erwise. We can marginalize the probability that an item has been 
rated by the event that it has been discovered or not. Given 
that(𝑟𝑎𝑡𝑒𝑑|¬𝑠𝑒𝑒𝑛, 𝑖) = 0 (a user cannot rate items she has not yet 
discovered), and further marginalizing over relevance, we have: 
𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖) = 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, 𝑖)𝑝(𝑠𝑒𝑒𝑛|𝑖) 

= 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙, 𝑖)𝑝(𝑠𝑒𝑒𝑛|𝑟𝑒𝑙, 𝑖)𝑝(𝑟𝑒𝑙|𝑖) 
+𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙, 𝑖)𝑝(𝑠𝑒𝑒𝑛|¬𝑟𝑒𝑙, 𝑖)(1 − 𝑝(𝑟𝑒𝑙|𝑖)) 

If we rewrite all the equations in section 4 using this decom-
position, we realize that the ideal rankings –and hence the preci-
sion of popularity– depend on, and can be fully expressed in terms 
of, the following factors appearing above: 



  
 

 

 

 The bias in the user decision towards rating discovered items 
depending on whether they like them or not, reflected in 
𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙, 𝑖) and 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙, 𝑖).  

 The potential bias in item discovery, towards finding liked or 
non-liked items more often, represented in 𝑝(𝑠𝑒𝑒𝑛|𝑟𝑒𝑙, 𝑖), and 
𝑝(𝑠𝑒𝑒𝑛|¬𝑟𝑒𝑙, 𝑖). 

 The relevance distribution over items 𝑝(𝑟𝑒𝑙|𝑖), reflecting that 
some items may be liked by more people than others. 
The conditional dependence between rating, relevance, and 

items can be therefore reformulated as conditional dependencies 
of user behavior and item discovery on relevance and items, as we 
summarize in Fig. 2: if (and only if) rating decision and item dis-
covery only depend on relevance, then rating only depends on rel-
evance: 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑟𝑒𝑙, 𝑖)  =  𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙, 𝑖)  𝑝(𝑠𝑒𝑒𝑛|𝑟𝑒𝑙, 𝑖)  ∼ 
𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙) 𝑝(𝑠𝑒𝑒𝑛|𝑟𝑒𝑙) = 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑟𝑒𝑙), and conclusion 1 
holds. Analogously, if the former are conditionally independent 
from relevance, so is the latter, and conclusions 2 and 3 hold. And 
when discovery and user behavior are not conditionally independ-
ent from the same thing (relevance or the item), rating depends 
on both relevance and the item. We briefly reflect on the meaning 
of dependencies at this level the next subsections. 

5.1 User Rating Behavior 
Rating decision, in face of a discovered item, is essentially deter-
mined by human behavior [18]. The user bias towards rating rel-
evant items more often than non-relevant ones has been men-
tioned as a likely possibility (a MNAR case) in prior work [25], 
and some studies have confirmed this trend in particular environ-
ments [24]. Considering that relevance is the main intrinsic prop-
erty of consumed items that may bias the user’s rating decisions 
(conditional independence from the item given its relevance) may 
be a reasonable simplification for many purposes. It is moreover 
possible to make the decision independent from both the item and 
user tastes e.g. in a controlled experiment, where users are 
prompted for explicit feedback on items they did not freely 
choose, as we shall describe in section 6.  

5.2 Item Discovery 
Item discovery results from a more complex combination of ac-
tions by the user (e.g. searching and browsing) and external 
agents (advertisement, mouth-to-mouth [8], recommender sys-
tems [15,33], random chance, etc.). Discovery thus results from the 
interplay of a variety of processes, some of which are typically not 
the same for all items, and thus certainly do depend on the specific 
item. For instance, the item producer and/or marketer is one active, 
item-specific agent in the dissemination of the item towards poten-
tial consumers. At the same time, discovery may depend on rele-
vance, as is generally the case when items are found by users 
through a search engine, a recommender system, or a suggestion by 
a friend. If such discovery means are more accurate than random, 
discovery will be biased towards items that users will like. 

Discovery independence from the item given its relevance rep-
resents a fair situation in which all items have equal opportunity to 
be discovered, except for favoring positive matches in the interest 
of users. On the other end, conditional discovery independence 
from relevance represents a scenario where each item has its own, 
somewhat arbitrary degree of promotion, which fails to properly 
consider what users may or may not like –users are at the mercy 
of marketing or fashion [5,7], and dispense with search or recom-
mendation aids, or these are ineffective. 

5.3 Multiple Dependence 
We noted at the end of section 4 that in the general case with no 
assumption any outcome can occur for the effectiveness of 
popularity, agreements or disagreements between observed and 
true precision. We may however seek further insights beyond 
that, by estimating the expected situation considering all the 
possible values that the five fundamental distributions may 
take: 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙, 𝑖),  𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙, 𝑖),  𝑝(𝑠𝑒𝑒𝑛|𝑟𝑒𝑙, 𝑖), 
𝑝(𝑠𝑒𝑒𝑛|¬𝑟𝑒𝑙, 𝑖), and 𝑝(𝑟𝑒𝑙|𝑖). This means assessing the expected 
precisions for popularity, average rating, and the optimal rankings 
over the space of such values. Formally, we should compute:  

𝔼[𝑃@1|𝜃] = ∫ 𝔼[𝑃@1|𝜃, 𝜔]𝑑𝜔
Ω𝑛

 

and similarly for 𝔼[�̂�@1|𝜃], with 𝜃 denoting the different rank-
ers, and Ω𝑛 representing the set of all possible valid values of the 
five conditional probabilities for all 𝑖 ∈ ℐ –namely Ω = [0,1]5 and 
𝑛 = |ℐ|. This expectation can be estimated in a Monte Carlo ap-
proach, by sampling points 𝜔 ∈ Ω𝑛 uniformly at random, compu-
ting the ranking 𝑅  that each recommender 𝜃  returns given 𝜔 
(which is straightforward since 𝑝𝑜𝑝, 𝑎𝑣𝑔, 𝑓, and 𝑓 are direct func-
tions of the five probabilities in Ω), and computing 𝔼[𝑃@1|𝑅] and 
𝔼[�̂�@1|𝑅], which again are functions of the same probabilities. 

Fig. 3 shows the result for |ℐ| = 3,700 (using the MovieLens 
1M size [17] as an example) –it is easy to check that the results do 
not qualitatively depend on |ℐ|. We see that we may expect a sub-
stantial and qualitative contradiction between the observed and 
true precision: 

Conclusion 4 – In the absence of any independence assumption, 
while according to observed precision (as we would measure in a 
standard experiment) popularity would appear to be optimal and 
the average rating would seem barely better than random, popular-
ity can be expected to be in truth just better than random, and the 
average rating to be better than popularity.  

Note the difference in extent of this finding compared to conclu-
sions 1-3 in section 4. Whereas the results here are in expectation 

P@
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Figure 3: Expected precision with no assumption. The ex-
pectation is estimated by Monte Carlo random sampling 
over the set of all possible valid values of 𝒑(𝒓𝒂𝒕𝒆𝒅|𝒔𝒆𝒆𝒏, 𝒓𝒆𝒍), 
𝒑(𝒓𝒂𝒕𝒆𝒅|𝒔𝒆𝒆𝒏, ¬𝒓𝒆𝒍), 𝒑(𝒔𝒆𝒆𝒏|𝒓𝒆𝒍, 𝒊), 𝒑(𝒔𝒆𝒆𝒏|¬𝒓𝒆𝒍𝒊) , 𝒑(𝒓𝒆𝒍|𝒊) , 
for 𝒊 ∈ 𝓘 with |𝓘| = 𝟑, 𝟕𝟎𝟎, 𝝆 = 𝟏 for true precision and 𝝆 =

𝟎. 𝟖 for observed precision, taking 𝟏𝟎𝟒 random samples. 

1. Item-independence 
2-3. Relevance- 
independence 4. No assumption 

   

Figure 2: Graphical models summarizing the conditional 
independence assumptions in conclusions 1 through 4. 
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over all possible values of the conditional discovery, conditional rat-
ing decision and relevance probabilities (which means that the re-
sults may differ for specific probability values), the conclusions in 
section 4 hold strictly for any value of such probabilities, as long as 
the stated assumptions hold. Moreover, in the Monte Carlo estima-
tion we have assumed a uniform “meta-distribution” of the proba-
bility values, while in practice some configurations can be expected 
to be more likely than others. Be that as it may, this neutral expec-
tation provides an additional reference point in our analysis.  

6 EMPIRICAL OBSERVATIONS 
We now run some experiments to see if the analytical results 
match empirical observations and to what extent. We build for 
this purpose a new dataset simultaneously supporting measure-
ments under MAR (data missing at random [23,24]) and MNAR 
conditions. 

6.1 A Crowdsourced MAR Dataset 
Common publicly available datasets [12,17] usually provide user 
ratings for items in some domain, which have been collected 
through some natural process where users freely interact with 
items, under the influence of a myriad of discovery sources, some 
internal to the system where ratings are collected, and others exog-
enous. When using such collections there is generally no way to 
know precisely the discovery and behavior distributions from 
which the rating distribution resulted. We can only compute ob-
served metric values, aware that they are measured upon MNAR 
data [25,34], and we have no means to contrast this to true unbiased 
values. Fig. 1 showed earlier an example of this usual situation on 
two well-known datasets. We see that popularity performs fairly 
well, far above random recommendation, and the average rating 
stands behind popularity by a clear difference. In our experiments 
we use a smoothed rating average, to avoid an extremely poor ac-
curacy due to the high variance in the items with lowest number of 
ratings. We use Dirichlet smoothing with 𝜇 = avg𝑖∈ℐ|𝑖𝑡𝑟𝑎𝑖𝑛| –the 
average sample size– as a fair default setting [36]. We may suspect 
the presence of biases and some effect on the observed results, but 
we cannot explain or verify much further with the available data. 

Seeking further insights, we build a new dataset where data is 
(essentially) MAR, by a crowdsourcing approach as follows.1 We 
sample around 1,000 music tracks from the Deezer database2 uni-
formly at random using the public API. Then, we work with 
around 1,000 users (after discarding unreliable input through sev-
eral checks and filters) in the CrowdFlower3 service. We randomly 
assign tracks to users in such a way that each track is assigned to 
about 100 users, and each user gets about 100 tracks assigned, add-
ing to a total of about 100,000 assignments. For each assignment, 
we ask the user to play the music and tell whether or not a) she 
likes it, and b) she had heard it before this survey.  

The novelty of the resulting dataset with respect to others is 
that we completely remove the discovery bias by sampling and 
assigning items to users uniformly at random. Moreover, we com-
pletely remove the rating decision bias by requiring users to rate 
everything they are presented with, that is 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛) = 1 in 
the resulting dataset. Furthermore, the declared user music 
knowledge information enables recreating MNAR data condi- 

                                                                 
1 The dataset is publicly available at http://ir.ii.uam.es/cm100k 
2 https://www.deezer.com 

tions, as we shall see. Fig. 4 shows the rating and relevant rating 
distributions 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑖) and 𝑝(𝑟𝑎𝑡𝑒𝑑, 𝑟𝑒𝑙|𝑖) in our crowdsourced 
dataset and in MovieLens. For the former we show, additionally, 
the discovery distribution 𝑝(𝑠𝑒𝑒𝑛|𝑟𝑎𝑡𝑒𝑑, 𝑖). We can see that the 
rating distribution in our dataset corresponds to a uniform prob-
ability (with a natural binomial sampling variance), whereas dis-
covery and relevance are heavy-headed.  

6.2 Evaluation under Different Scenarios 
The unbiased data thus collected enables reproducing different sce-
narios for experimentation, resulting in different outcomes for 
popularity, which are shown in Fig. 5. The dataset as is enables two 
different scenarios, and two additional ones are recreated by 
resampling the ratings in different ways. We describe each sce-
nario and the corresponding experimental results in turn in the fol-
lowing paragraphs labeled a-d, matching the labels in Fig. 5. In all 
scenarios, we split the ratings into training and test with 𝜌 = 0.8 
(5-fold validation) and we interpret the absence of rating as non-
relevance (alike to negative ratings). We average the results over 
10 executions to reduce the variance in all experiments with the 
crowdsourced data. Along with the evaluated methods we show 
the metric values for the optimal non-personalized rankings de-
fined by 𝑓 and 𝑓 in equation 5, as skyline oracles that are given ac-
cess to relevance information that is hidden from the other recom-
menders. We also show results on MovieLens for quick reference. 

a) Rating fully independent from relevance and items. 
Since rating decision is, by our data collection design, independent 
from items and relevance, the dataset as is fits in the case de-
scribed in section 4.2, where conclusions 2 and 3 apply. Because 
the rating distribution is uniform over items, the relevance distri-
bution is much steeper in comparison, and we have specifically 
conclusion 3a. The results can be seen in Fig. 5a: popularity and 
the average rating perform significantly better than random, and 
not far from the optimal non-personalized ranking, which con-
firms the analytical expectation. We can only measure observed 
precision here, since we do not have further relevance knowledge 
beyond the collected ratings.  

We can also see the advantage of popularity over random is 
smaller than in MovieLens: because of the flat rating distribution, 
the relevant rating distribution is much less steep in our dataset 

3 https://www.crowdflower.com 
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Figure 4: Data distribution in MovieLens 1M (left) and our 
crowdsourced dataset (right). Note that each curve has axis 
𝒙 (items) sorted by decreasing order of the corresponding 
distribution so as to better show its shape –the 𝒙 values of 
the curves therefore do not match with each other. 
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(see Fig. 4), and popularity therefore gets a considerably lesser ad-
vantage. Moreover, we find that the accuracy of popularity and 
the average rating become statistically equivalent. This provides 
an explanation for the results reported by Cremonesi et al. [14], 
where removing the head of the rating distribution reversed the 
comparison between popularity and the average rating, as the rat-
ing distribution was made flatter –moreover, popularity was de-
fined in [14] as the total number of ratings (rather than just posi-
tive ones), which naturally converges to random recommendation 
as the rating distribution tends towards uniformity.  

b) Mixed discovery dependencies. Based on the user feed-
back on what music they had heard before, we can reproduce a 
natural MNAR discovery bias by providing the recommender sys-
tems as input only the ratings for music that users declared to 
know. We likewise compute observed precision by counting rele-
vant items only when they were known to the user. But at the 
same time, we can estimate true precision by using the full avail-
able MAR relevance information. This knowledge only covers 
about 10% of items for each user but, as a uniform sample, it ena-
bles an unbiased estimate of true precision. We still have 
𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛) = 1 (where “𝑠𝑒𝑒𝑛” now means the user declared to 
know the item before the experiment) and rating decision of a dis-
covered item is independent from items and relevance, therefore 
the resulting setting corresponds to the mixed situation described 
in sections 4.3 and 5.3. We have no particular reason to assume 
discovery (by whatever processes lead users to discover music be-
fore our experiment) could be independent from neither items, 
nor relevance. In fact, the results shown in Fig. 5b suggest, by their 
difference to cases c and d (to be described next), that both de-
pendences must be present in the data.  

While observed precision depicts a comparable outcome to the 
results on MovieLens, true precision tells quite a different story, 
revealing a quite inadequate performance, even slightly (but sta-
tistically significantly in 𝑃@1) below random. On the other hand, 
the average rating performs somewhat poorly but better than pop-
ularity in true accuracy, most particularly in terms of nDCG@10. 
Overall, the results seem not far from conclusion 4. 

c) Relevance-independent discovery. We can reproduce 
separate discovery biases by simple resampling procedures. By 
randomly shuffling the discovery distribution over items, i.e. re-
assigning each 𝑝(𝑠𝑒𝑒𝑛|𝑖) to a random item 𝑗, we can decouple dis-
covery from relevance, that is we remove any dependence there 
might be between 𝑠𝑒𝑒𝑛 and 𝑟𝑒𝑙 given an item. Discovery there- 
fore only depends (by random arbitrary assignment) on the item. 
Discovery (to which the rating distribution is proportional in this 
case) seems to have a slightly steeper distribution than relevance 
in Fig. 4, but this does not seem to be enough and the setting tends 
to fit in conclusion 3c. The contradiction between observed and 
true accuracy is most striking in this scenario: popularity stands 
out in observed precision, where the average rating is just above 
random, while almost the opposite is the case in true precision  
–though popularity is still better than random, as expected. 

d) Item-independent discovery. We can reproduce a rele-
vance-only dependent discovery by randomly reassigning (fic-
tional) discovery to user-item pairs with probability 𝑝(𝑠𝑒𝑒𝑛|𝑟𝑒𝑙) 
if the user likes the item, and with probability 𝑝(𝑠𝑒𝑒𝑛|¬𝑟𝑒𝑙) oth-
erwise, using the values of 𝑝(𝑠𝑒𝑒𝑛|𝑟𝑒𝑙)  and 𝑝(𝑠𝑒𝑒𝑛|¬𝑟𝑒𝑙)  esti-
mated from our initial data. By doing so, the resulting discovery 
distribution will just depend on the relevance of items, and we 
remove the potential direct dependence on the item. As in cases b 
and c above, we only use the ratings (as system input and for ob-
served precision computation) on items that users have “𝑠𝑒𝑒𝑛”. 
Once again, we see the results in Fig. 5d match the analytical pre-
diction (conclusion 1). Popularity seems to take better advantage 
of the relevance dependence than the average rating. The ad-
vantage is nonetheless quantitatively small. 

The empirical results are thus largely coherent with the analyt-
ically characterized behaviors. The non-personalized rankings ap-
proach but do not fully reach the oracle theoretical optima when 
the theory suggests it should. This can be attributed to the sam-
pling variance involved in rating assignment and the data split. The 
comparisons between popularity, average rating and random rank-
ings are however similarly affected by the variance, and do seem 
to match more closely what theory expects. Though we focused on 
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Figure 5: Empirical confirmation of the analytical results. Column a) reflects and confirms conclusions 2 and 3a; c) corresponds 
to conclusions 2 and 3c, d) matches conclusion 1, and b) exemplifies the general scenario addressed in conclusion 4. We confirm 
several inconsistencies between observed and true accuracy, and find below-random recommendation performance for popu-
larity in scenario d. We also show the accuracy of the (oracle) optimal non-personalized rankings. Non-statistically significant 
differences (2-tailed Student’s t-test at 𝒑 < 𝟎. 𝟎𝟏) are indicated in the graphs with a red double arrow.  
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P@1 as a tractable metric, it seems to consistently generalize em-
pirically to other metrics (we just show nDCG@10 for the sake of 
space, but other metrics follow similar patterns). In fact, deeper 
cutoffs align slightly more tightly with the analytical findings, pos-
sibly because they are more robust to the potential peculiarities of 
a single top 1 item. We have also found some sensitiveness to the 
split ratio at specific points, which we envisage analyzing along 
with the sampling protocol in further depth in future work. 

The crowdsourced dataset provides information that allows 
supplying MAR (scenario a) or MNAR (scenarios b, c, d) input data 
for the algorithms; and MAR or MNAR relevance information for 
computing the observed and true value, respectively, of evalua-
tion metrics in any scenario. In other words, we evaluate with rat-
ings that are usually missing. Related to this, Marlin et al. [24,25] 
also used semi-randomly polled ratings with a different focus: 
learning and correcting for the MNAR biases in recommendation 
algorithms. They did not explain how the biases result in metric 
disagreements, but they empirically observe them. Nor do they 
analyze popularity or consider the role of item discovery, but the 
overall idea of randomly sampling ratings for unbiased metric es-
timates is a direct precedent of our experimental approach.  

6.3 Popularity-Biased Personalized Algorithms 
As we discussed in section 2, popularity is known to be a major 
trend in most state of the art collaborative filtering methods 
[9,14,21]. We may therefore wonder whether similar patterns may 
manifest in some way in the algorithms that are biased to this fea-
ture. Focusing on the most general, mixed dependence scenario 
(case c), we test, as just a sample and representative method, two 
variants of the user-based 𝑘 nearest neighbors (kNN) algorithm: 
normalized and not normalized, as defined in e.g. [14]. The latter 
is known to be popularity-biased, whereas the former is biased 
towards the average rating [9]. We tune 𝑘 on MovieLens 1M for 
𝑃@1 by grid search by multiples of 10, then 100 then 1,000, using 
a validation subset of the training data. On the crowdsourced da-
taset we just take all users as neighbors to avoid the burden of 
tuning for true precision –we nevertheless checked that doing so 
only makes the resulting differences larger and clearer.  

Fig. 6 shows the result: the popularity-biased algorithm appears 
to be clearly better than the one biased to the average rating in 
terms of observed metric values (in line with prior reported results 
[9,14]), while the true values reveal rather the opposite is the case. 
One may wonder if we would see a similar result in MovieLens had 
we had an unbiased glimpse of the unseen relevance for this dataset.  

7 DISCUSSION 
Our study confirms the general popularity effectiveness trend 
[14,21], formally proving and explaining where this comes from. 
We also find that the apparent accuracy can be misleading (i.e. does 
not match the true accuracy) in many cases: this mainly happens, 
in essence, when item discovery is broadly detached from user taste. 

We show that common experiments (i.e. observed accuracy 
metric values) may be rather unfair to the average rating, and its 
personalized derivatives. Contrarily to what has been observed in 
the literature so far [14,21], the average rating may be in fact a 
better, safer, more robust signal than the number of positive rat-
ings in terms of true achieved accuracy in most general situations 
–a quick glimpse at Table 1 or Fig. 3 and 5 evidences that while 
the observed accuracy of popularity would appear better than the 

average rating in many cases, the latter actually outperforms –or 
at worst is not far from– the former in true accuracy. In exchange, 
the rating average needs smoothing and hence parameter tuning 
–we see that a simple default configuration works quite well 
nonetheless. Furthermore, if unbiased item judgments are availa-
ble for training, the average rating can definitely and systemati-
cally outperform popularity (we omit such experiments here for 
the sake of space). 

We further find out that among the factors producing MNAR 
conditions in rating data [24,25,34], taste biases in users’ decision 
to rate items may not have exactly the role that has been sug-
gested in the literature. In particular, it does not matter whether 
liked items are rated more often or less, when it comes to the ef-
fectiveness of popularity or the average rating, and its measure-
ment. The situation with regards to our analytical findings is the 
same regardless, for all purposes, since we did not need to assume 
𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, 𝑟𝑒𝑙) > 𝑝(𝑟𝑎𝑡𝑒𝑑|𝑠𝑒𝑒𝑛, ¬𝑟𝑒𝑙)  or the opposite any-
where in our analysis. What matters is just whether rating de-
pends on relevance or not, and whether the dependence is full or 
partial; but not in what direction. 

The ideal conditions for popularity and the average rating to be 
truly accurate are cases when discovery mainly depends on rele-
vance, or barely depends on it. The average rating seems more ro-
bust than popularity to relevance-independence –so it would be 
preferable over popularity in highly biased (e.g. marketing-driven) 
scenarios. Popularity might take a slightly better advantage of rele-
vance dependence, though further experiments would be needed to 
check this point, as the difference is small in our observations, and 
the theoretical conclusions would suggest a tie. Problems can arise 
in the mixed case where, in our particular experiment, we strik-
ingly discover not only a contradiction between observed and true 
accuracy, but a below random performance for popularity.  

Finally, we observe that the findings for popularity, worthy of 
research in themselves, can have further signification on top-per-
forming recommendation algorithms as far as they are popularity-
biased. For instance, Cremonesi et al. [14] had found that a nor-
malized kNN algorithm outperformed the non-normalized version 
when the top head items were removed. We now find an explana-
tion in our analysis, by the trends described in scenario a (section 
6.2) for a flattened rating distribution, along with the respective 
bias of the kNN variants to popularity and the average rating.  

Our findings may call for a second look at the algorithmic state 
of the art in light of new approximations to true accuracy. In this 
perspective, preference data on randomly sampled users and items 
may be costly to obtain, but can be a highly clarifying complement 
of common experiments with biased user interaction data.  
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Figure 6: User-based kNN in MovieLens 1M and the 
crowdsourced 100k dataset, mixed dependency scenario. All 
pairwise differences are statistically significant (2-tailed Stu-
dent’s t test at 𝒑 < 𝟎. 𝟎𝟎𝟏). 
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8 CONCLUSIONS 
We have developed a formal analysis of the effectiveness of pop-
ularity-based recommendation, upon the identification and for-
malization of key factors on a probabilistic basis. Our findings 
provide some principled explanation of the general trend ob-
served in experiments reported in the recent literature in the field 
[14,21]. At the same time, insights from a deeper analysis suggest 
we may want to scratch beneath the surface of common experi-
ments as we may discover unperceived and potentially different 
outcomes. To the best of our knowledge, these represent the first 
specific results to be reached on the question whether popularity 
is an effective or misleading signal in recommendation –and the 
first to suggest the average rating might be preferable to the num-
ber of favorable preferences as a non-personalized signal. 

The presented findings can be useful in different ways. In a 
working application, we may wish to know if popularity is truly 
effective or not, in order to leave it or not as a trend in our algo-
rithms. In an evaluation experiment, we may want to neutralize 
the interference of the popularity bias by an experimental design 
where popularity amounts to random recommendation [4,21,35]. 
Or we might want to rethink recommendation algorithms in light 
of what formal analysis or new experiments on true precision can 
reveal. Our reported experiments show that getting such esti-
mates on unbiased samples is feasible. 

Our research can be extended in many directions. To begin 
with, our findings may have implications on state of the art rec-
ommendation algorithms, inasmuch as they are strongly biased 
towards popularity. Re-examining their effectiveness in view of 
our findings may deserve further study. We also envision the con-
struction of further and larger datasets as a worthy endeavor, per-
haps by more coordinated efforts in the community. These should 
allow to further confirm, revise, or extend our findings. Different 
scenarios defined by different –or fewer– assumptions could be 
explored as well. For instance, even though random data splitting 
is very common practice in the recommender systems literature, 
we find it worthwhile exploring beyond this and consider, for in-
stance, temporal data splits, which better represent a real setting. 
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