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ABSTRACT 
It has long been found that well-configured recommender sys-
tem ensembles can achieve better effectiveness than the com-
bined systems separately. Sophisticated approaches have been 
developed to automatically optimize the ensembles’ configura-
tion to maximize their performance gains. However most work 
in this area has targeted simplified scenarios where algorithms 
are tested and compared on a single non-interactive run. In this 
paper we consider a more realistic perspective bearing in mind 
the cyclic nature of the recommendation task, where a large part 
of the system’s input is collected from the reaction of users to 
the recommendations they are delivered. The cyclic process pro-
vides the opportunity for ensembles to observe and learn about 
the effectiveness of the combined algorithms, and improve the 
ensemble configuration progressively.  

In this paper we explore the adaptation of a multi-armed 
bandit approach to achieve this, by representing the combined 
systems as arms, and the ensemble as a bandit that at each step 
selects an arm to produce the next round of recommendations. 
We report experiments showing the effectiveness of this ap-
proach compared to ensembles that lack the iterative perspec-
tive. Along the way, we find illustrative pitfall examples that can 
result from common, single-shot offline evaluation setups. 
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1 Introduction 
In the pursuit of maximal recommendation effectiveness it was 
soon realized in the field that the best results in recommendation 
are obtained by aggregating several algorithms into ensembles 
[4]. Besides a practical means for scrapping accuracy improve-

ments, ensembles are a particular way to build hybrid systems 
that combine the strengths (and compensate the limitations) of 
different recommendation approaches, such as content-based 
and collaborative filtering methods [6,15]. Hybrid recommenda-
tion is routinely listed as a category on its own in recommender 
systems introductions and surveys [1]. 

One of the challenges in building ensembles lies in properly 
tuning the contribution of the combined algorithms to the aggre-
gated output. Sophisticated approaches have been developed to 
automatically optimize the ensembles’ configuration to maximize 
their performance gains. Ensembles should include individual 
algorithms with proven performance in order for the combina-
tion to be effective. However most work in this area has targeted 
simplified scenarios where algorithms are tested and compared 
on a single non-interactive run where each user is delivered just 
one set of recommended items, on which a final evaluation met-
ric is computed and the experiment ends. As runtime conditions 
(data, users, item catalog, etc.) evolve, the performance of previ-
ously well-behaved algorithms may degrade and hamper the en-
semble effectiveness –or weaknesses may simply surface that 
had gone unnoticed in the selection phase. We may therefore 
wish that the participation of the combined algorithms be dy-
namically updated and readjusted to better reflect the latest ac-
counts of their performance –and/or our current knowledge 
thereof– as they deliver partial outputs in a production system.  

In this paper we consider a more realistic perspective beyond 
single-shot recommendations, bearing in mind the cyclic nature 
of the recommendation task, where a large part of the system’s 
input is collected from the reaction of users to the recommenda-
tions (the system’s output) they are delivered. The cyclic process 
provides the opportunity for ensembles to test, observe and learn 
about the effectiveness of the combined systems, and improve 
the ensemble configuration progressively, casting ensemble con-
figuration as a reinforcement learning task [20,23]. In this per-
spective, we explore the adaptation of a multi-armed bandit ap-
proach to dynamically optimize recommender system ensembles, 
by representing the combined systems as arms, and the ensemble 
as a bandit that at each step selects an arm to produce the next 
round of recommendations.1 

We adapt two basic bandit algorithms –Thompson sampling 
[8] and ε-greedy [23]– and verify that the resulting approaches 
are empirically more effective than alternative ensemble tech-
niques that lack the long-term perspective in experiments based 
on offline datasets. Along the way, we find illustrative pitfall ex-
amples such as overfitting behavior, self-defeating reinforcement 
loops, and poor decisions that can result from common, single-
shot offline evaluation setups. 
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1 An implementation of all the methods and experimental procedures described in 
this paper is publicly available at https://github.com/ir-uam/EnsembleBandits. 
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2 Related Work 

2.1 Recommender System Ensembles 
Hybrid systems have been found to be good means to improve 
the performance separately obtained by effective individual rec-
ommendation algorithms. Ensembles are a particular case of hy-
brid approach which regards the algorithms to combine as black 
boxes. This has the powerful advantage of allowing the combina-
tion of as many algorithms as we wish, and of any type [4,6,23]. 
The vast majority of research in this area has focused on running 
recommendations only once. There are, however, some studies 
that seek to dynamically improve the ensembles [2,3,9,15]. An 
important issue in most such prior work is the use of learning 
and optimization techniques (bagging, boosting, fusion, random-
ness injection) to compute the best parameter configuration of 
complex models. This can potentially increase the execution time 
of the ensemble, hindering its scalability in production scenarios. 
Moreover, all of them imply the execution, at least once, of all 
the combined algorithms in order to identify the best one.  

2.2 Bandit Recommender Systems 
The application of multi-armed bandit techniques has started to 
become popular in the recommender systems field. Work in this 
area has used bandit techniques to select the next item to rec-
ommend by considering all the candidate items as arms of the 
bandit [14,16,17,25,26]. There is barely any precedent in model-
ing ensemble components as arms, as we explore in this paper. 
Closest to our present research is the work by Brodén et al. [5], 
though it is developed in non-personalized item-to-item recom-
mendation in a quite specific e-commerce context. Pang et al. 
[20] also propose to use bandits as ensembles of algorithms, but 
not for recommender systems. And other work that relates ban-
dits and ensembles has focused on combining algorithms that are 
bandits, that is, on creating ensembles of bandits [24]. 

One important application of bandit ensembles is A/B testing 
[12,22], where a bandit method automatically decides between 
several algorithms based on their previous performance. If one 
recommendation algorithm is clearly less effective than the oth-
ers, the bandit ensemble will progressively reduce the traffic it is 
assigned. In this line, we may say that bandit ensembles have 
been already used for A/B testing to select a winner between 
several candidates [11] –such winner is simply the algorithm 
that has been selected more times by the ensemble. Bandit A/B 
testing implicitly assumes that some of the tested systems will be 
called increasingly less often by the bandit, or that we are con-
strained (by whatever environmental conditions) to making an 
excluding choice among the alternatives. But this might not be 
the case: there may not be a clear winner, or the reward may not 
be stationary and the best algorithm in the past is not necessarily 
so in the future. And the A/B test traffic may not monotonically 
decrease towards zero for all systems but one sought champion. 
And we may not have any major deterrent in leaving the ensem-
ble running indefinitely if it happens to be more effective itself 
than either of the tested variants. Such conditions motivate the 
perspective we explore here. 

3  Bandit Recommender System Ensembles 
We propose to adapt the multi-armed bandit approach for build-
ing recommender system ensembles. Our proposed bandit for-
mulation of recommender ensembles is as follows: 
• The context is the target user to whom a recommendation is 

to be delivered. 
• The arms are the recommendation algorithms that are com-

bined in the ensemble. When an arm is selected, the corre-
sponding algorithm is run to select one item to be recom-
mended to the target user. 

• The reward is 1 if the user is pleased by the recommended 
item, and 0 otherwise. 

• Arms can be updated after each individual recommenda-
tions, or every certain number (a batch) of recommendations 
[21]. In our experiments, we will select target users in a loop 
over all users, and update the arms after each such round. 
Following the multi-armed approach, the selection of the algo-

rithm to recommend at each step is based on its performance in 
the previous cycles in which it has been selected. For instance, in 
ε-greedy [23], the algorithm (arm) that has the highest average 
reward (i.e. the precision) so far is selected with probability 1 − ε, 
and with probability ε an algorithm is selected uniformly at ran-
dom regardless of its historical effectiveness. For Thompson sam-
pling [8], the posterior of the unknown reward distribution of each 
arm is modeled as a Beta(𝛼𝑎, 𝛽𝑎) distribution, where 𝛼𝑎 and 𝛽𝑎 are 
the number of successful and unsuccessful recommendations of 
algorithm 𝑎, respectively. A value 𝑝𝑎 is drawn for each arm from 
its Beta distribution, and the arm with highest value is selected. 

Note that the previous bandit reformulation can be employed 
to transform any multi-armed bandit solution into a recom-
mender ensemble. In the next section we specifically chose to 
implement the previous explained popular bandits (Thompson 
sampling and ε-greedy) to verify our proposal, but any other 
bandit method could be used following the previous approach. 

4 Experiments 

4.1 Data  
In order to verify the performance of the bandit recommender 
ensembles that we have proposed in the previous section, we run 
the algorithms using data from the MovieLens 1M dataset [18], 
containing 1,000,209 ratings by 6,040 users to 3,706 movies. We 
binarize the ratings by mapping values 1-3 to 0 and 4-5 to 1.  

4.2 Algorithms 
In order to be able to closely examine the behavior of our bandit 
ensembles, we shall test the combination of just three recom-
mendation algorithms: two well-performing collaborative filter-
ing methods (kNN [19] and matrix factorization [13]), and non-
personalized most-popular recommendation, which represents a 
good option when the data is too sparse to obtain any reliable 
personalized signal. As a baseline ensemble we implement an 
alternative dynamic ensemble, which we apply to the same three 
algorithms. At each point in time, this ensemble applies an of-
fline evaluation of the combined algorithms –by randomly split-
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ting the input data collected so far into training and test subsets– 
and chooses the best one (in Precision@1) to produce the next 
round of recommendations –now taking all the available data as 
input training. We will also compare our approach, as a point of 
reference, to the individual algorithms combined in the ensem-
bles, as well as random recommendation. 

We tune the configuration of our bandit ensembles by grid 
search. Thus, we initialize the Thompson sampling with 𝛼𝑎 =

1,000 and 𝛽𝑎 = 1 for all the three combined recommendation al-
gorithms, and ε = 0.1 for the ε-greedy bandit. We configure kNN 
with cosine similarity and all users as neighbors, for simplicity; 
and we take the configuration of matrix factorization reported in 
[7] for MovieLens 1M: 𝛼 = 1, 𝜆 = 0.1, 𝑘 = 20, and 20 iterations. 

4.3 Offline Evaluation Approach 
Our evaluation approach simulates an environment where users 
discover and rate the items that recommender systems iterative-
ly suggest them, providing new feedback that the systems can 
incorporate as input in the next round.  

We start from an initial training set including 5% of the availa-
ble ratings sampled uniformly at random (equivalent to ~10 ratings 
per user). We run the evaluated recommender system (ensemble 
or standalone algorithms) with the training set as input, and use 
the remaining 95% of the data as the test set to simulate user feed-
back. At each round (epoch) of the simulation, the system recom-
mends one item to each user (bandits pulling an arm per user); for 
each user, the resulting reward is 1 if a positive rating is available 
in the test set for the recommended item, and 0 otherwise. If a 
(positive or negative) rating was available, it is added to the train-
ing set, and the cycle goes on. If not, we keep track and take care 
that the same item is not recommended again to the same user. 
Note that each recommender system has its own training, test and 
exclusion sets, since they are built from the user feedback to their 
own specific recommendations. Thus, only the initial training set 
is common to all the compared systems. The algorithms within 
ensembles do share the same data, collected by the ensemble. 

For Thompson sampling, the value of the parameters 𝛼𝑎 and 
𝛽𝑎 corresponding to each algorithm 𝑎 (popularity, kNN and ma-
trix factorization) is updated after each epoch, by incrementing 
them in the number of, respectively, hits and misses that 𝑎 has 
obtained in the epoch. Since one epoch implies recommending 
an item for each user, the number of hits and misses can be in 
the order of thousands. For this reason we initialize 𝛼𝑎 as 1,000, 
as a highly optimistic initialization promoting exploration in the 
early stages, in order to avoid the bandit getting stuck with the 
algorithm that happens to obtain more hits in the first few 
epochs. Analogously, the ε-greedy bandit updates the hit rate of 
each candidate algorithm after each epoch.  

4.4 Results 
Figure 1 shows the results for the first 200 epochs. The number 
of epochs corresponds to the number of recommended items 
suggested to each user, since the recommender systems only 
recommend one item per epoch in our setting. Thus, we consider 
that 200 recommendations per user is a reasonable snapshot point 
to compare the different approaches. The performance of each 
recommender system (ensembles and standalone algorithms) is 

computed as the cumulative recall achieved up to each epoch. 
That is, as the number of successful recommendations, divided 
by the total number of relevant ratings in the initial test set.  

We can see that the bandit ensembles clearly outperform all 
other alternatives, which in fact work below what one might 
expect due to their myopic nature, targeting optimal one-shot 
recommendations. ε-greedy seems to do slightly better than 
Thompson sampling. 

The collaborative filtering algorithms are not able to do better 
than recommendation by popularity. This can be attributed to 
their vulnerability to the initial data sparsity, while non-
personalized popularity gets an advantage in the first few itera-
tions, when there is not enough data for exploitation-oriented 
collaborative filtering to produce reliable personalized recom-
mendations. After the first 50 recommendations we can see that 
kNN and matrix factorization start to catch up (their slope is 
steeper) but it is not enough for outperforming popularity.  

The poor performance of the non-bandit ensemble may come 
at some surprise. The ensemble appears to select matrix factori-
zation all the time, which seems to be a bad choice: the matrix 
factorization algorithm is optimal for a single recommendation, 
but shows to be quite suboptimal as a cyclic recommendation 
approach. An additional reason for the ensemble to stick to this 
selection can be attributed to a feedback loop effect [10]: since 
the ensemble is building its own training set from the recom-
mendations of matrix factorization, an offline evaluation (used 
by the ensemble to select a winner) using such training data (via 
a random split) is biased in favor of the algorithm that collected 
the ratings. We will further analyze this phenomenon in the next 
section, showing how the ensemble is strongly dependent on the 
winner of the first iteration. 

In order to better understand the behavior of our bandit en-
sembles, Figure 2 shows the fraction of users for whom each of 
the three combined algorithms has been selected by the ensem-
ble to produce the recommendation at each epoch. We can see 
that popularity is clearly dominant in the first iterations, but as 
the matrix factorization starts to improve, the bandit ensembles 
gradually increase the selection of the latter. kNN, however, 
seems to be rarely selected by the ensembles even though, as a 
standalone iterative recommender, it is better than matrix factor-
ization. This comes to show that bandit ensembles are able to 
achieve non-obvious enhanced optimizations.  

The behavior observed in Figure 2 also illustrates the fact that 
keeping more than one algorithm, at the appropriate traffic ratio, 

 
Figure 1: Incremental recall (𝒚 axis) vs. number of recom-
mendations (𝒙 axis) for the tested recommendation algo-
rithms, including the bandit ensembles. 
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Figure 3: Incremental recall (𝒚 axis) vs. number of recom-
mendations (𝒙 axis) for the baseline ensemble and the al-
gorithms it combines. Each graph corresponds to one dif-
ferent execution of the offline experiment. 
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can be better than choosing only one. This justifies the employ-
ment of bandit ensembles as alternative to conventional test A/B 
experiments, leaving thus the selection of the candidates in the 
hands of the bandit ensemble. If there is a clear winner, the bandit 
will reduce the fraction of users for whom other options are se-
lected to a minimum, as happens with kNN in our experiments.  

We also see that even though our two bandits soon favor ma-
trix factorization as a preferred algorithm, the initial reliance on 
popularity, albeit short, seems to not only directly improve the 
ensemble, but also considerably (indirectly) enhance the behav-
ior of matrix factorization itself thereafter (by collecting a richer 
pool of user feedback as input data), compared to an exclusive 
and persistent reliance on matrix factorization alone, as does the 
dynamic ensemble. The continued (albeit small) fraction of alter-
nation among algorithms, can also help in the same fashion. 

4.5 Overfitting and Reinforced Feedback Loop  
The tendency of the baseline ensemble to select matrix factoriza-
tion over the two other alternatives can be explained because 
matrix factorization is likely very good, in an offline evaluation, 
at (over)fitting whatever data has been collected. To provide fur-
ther insights on the feedback loop effects in the baseline ensem-
ble, we run additional experiments where we reduce the initial 
split ratio to 1% data for training, thus creating an even colder 
start with just 1 or 2 ratings per user in the initial training set. In 
such conditions, the variance of the initial random selection of 
the training set produces different winners in the dynamic non-
bandit ensemble at the first epoch, so that matrix factorization is 
not always the selected algorithm in the first iteration. 

Figure 3 shows different executions of the baseline ensemble 
and the basic algorithms with different random samples of the 
initial data. We zoom into the first 50 epochs to see the initial 
behavior of the ensemble that determines its subsequent evolu-
tion. While popularity, kNN, and matrix factorization behave 
quite the same in the different executions, the baseline ensemble 
switches between them in different instances of the same experi-
ment. In most of the cases, the algorithm selected in the first iter-
ation is kept thereafter by the ensemble, confirming the feedback 
loop effect. If the winner happens to be kNN or matrix factoriza-
tion, the ensemble shall underperform compared to popularity.  

There are –less frequent– situations, however, when the 
winner changes along the cycles, as is the case in the bottom-

right graph of Figure 3. This only happens in the first few itera-
tions though, and the winner stabilizes after epoch 5. Note, on 
the other hand, that in no situation the ensemble outperforms 
the best standalone algorithm (popularity).  

One might consider that this dynamic ensemble is just a bad 
idea. Note however that it represents the way an algorithm 
would be selected in a typical manual offline evaluation method-
ology, as has been widespread practice in the field to date. In 
contrast, the bandit ensembles seem not to suffer from this feed-
back loop bias, and are able to obtain better results than any of 
the combined algorithms achieve separately.  

5 Conclusions 
We have explored the incorporation of multi-armed bandit tech-
niques to the design of dynamic recommender ensembles that 
select the best among several algorithms based on the previous 
performance of each candidate. We have shown that the bandit 
approach is empirically effective, improving not only the indi-
vidual algorithms, but also other ensemble alternatives. In par-
ticular, the bandit approach does not suffer from the feedback 
loop bias that is evidenced in decisions based on offline evalua-
tion with logged data. 

An additional important advantage of bandit ensembles is 
their low computational cost: they need to run just one selected 
recommendation algorithm, and not all the others. The savings 
can be considerable when the combined algorithms are computa-
tionally involved, and the ensemble size is large [4]. 
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Figure 2: Fraction of users that the -greedy bandit (left) 
and the Thompson sampling bandit (right) have selected 
to be recommended by each of the basic algorithms that 
compose the bandit. 
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