
Multi-Armed Recommender System Bandit Ensembles

Rocío Cañamares
Universidad Autónoma de Madrid

rocio.cannamares@uam.es

Marcos Redondo
Universidad Autónoma de Madrid

marcos.redondo@estudiante.uam.es

Pablo Castells
Universidad Autónoma de Madrid

pablo.castells@uam.es

ABSTRACT
It has long been found that well-configured recommender sys-
tem ensembles can achieve better effectiveness than the com-
bined systems separately. Sophisticated approaches have been
developed to automatically optimize the ensembles’ configura-
tion to maximize their performance gains. However most work
in this area has targeted simplified scenarios where algorithms
are tested and compared on a single non-interactive run. In this
paper we consider a more realistic perspective bearing in mind
the cyclic nature of the recommendation task, where a large part
of the system’s input is collected from the reaction of users to
the recommendations they are delivered. The cyclic process pro-
vides the opportunity for ensembles to observe and learn about
the effectiveness of the combined algorithms, and improve the
ensemble configuration progressively.

In this paper we explore the adaptation of a multi-armed
bandit approach to achieve this, by representing the combined
systems as arms, and the ensemble as a bandit that at each step
selects an arm to produce the next round of recommendations.
We report experiments showing the effectiveness of this ap-
proach compared to ensembles that lack the iterative perspec-
tive. Along the way, we find illustrative pitfall examples that can
result from common, single-shot offline evaluation setups.

CCS CONCEPTS
• Information systems → Recommender systems • Computing
methodologies → Ensemble methods; Reinforcement learning.

KEYWORDS
Multi-armed bandits; Ensembles; Hybrid recommender systems;
Interactive recommendation; Feedback loop.

ACM Reference format:
Rocío Cañamares, Marcos Redondo and Pablo Castells. 2019. Multi-
Armed Recommender System Bandit Ensembles. In Proceedings of the
ACM Conference on Recommender Systems (RecSys’19). ACM, New York,
NY, USA, 5 pages.

1 Introduction
In the pursuit of maximal recommendation effectiveness it was
soon realized in the field that the best results in recommendation
are obtained by aggregating several algorithms into ensembles
[4]. Besides a practical means for scrapping accuracy improve-

ments, ensembles are a particular way to build hybrid systems
that combine the strengths (and compensate the limitations) of
different recommendation approaches, such as content-based
and collaborative filtering methods [6,15]. Hybrid recommenda-
tion is routinely listed as a category on its own in recommender
systems introductions and surveys [1].

One of the challenges in building ensembles lies in properly
tuning the contribution of the combined algorithms to the aggre-
gated output. Sophisticated approaches have been developed to
automatically optimize the ensembles’ configuration to maximize
their performance gains. Ensembles should include individual
algorithms with proven performance in order for the combina-
tion to be effective. However most work in this area has targeted
simplified scenarios where algorithms are tested and compared
on a single non-interactive run where each user is delivered just
one set of recommended items, on which a final evaluation met-
ric is computed and the experiment ends. As runtime conditions
(data, users, item catalog, etc.) evolve, the performance of previ-
ously well-behaved algorithms may degrade and hamper the en-
semble effectiveness –or weaknesses may simply surface that
had gone unnoticed in the selection phase. We may therefore
wish that the participation of the combined algorithms be dy-
namically updated and readjusted to better reflect the latest ac-
counts of their performance –and/or our current knowledge
thereof– as they deliver partial outputs in a production system.

In this paper we consider a more realistic perspective beyond
single-shot recommendations, bearing in mind the cyclic nature
of the recommendation task, where a large part of the system’s
input is collected from the reaction of users to the recommenda-
tions (the system’s output) they are delivered. The cyclic process
provides the opportunity for ensembles to test, observe and learn
about the effectiveness of the combined systems, and improve
the ensemble configuration progressively, casting ensemble con-
figuration as a reinforcement learning task [20,23]. In this per-
spective, we explore the adaptation of a multi-armed bandit ap-
proach to dynamically optimize recommender system ensembles,
by representing the combined systems as arms, and the ensemble
as a bandit that at each step selects an arm to produce the next
round of recommendations.1

We adapt two basic bandit algorithms –Thompson sampling
[8] and ε-greedy [23]– and verify that the resulting approaches
are empirically more effective than alternative ensemble tech-
niques that lack the long-term perspective in experiments based
on offline datasets. Along the way, we find illustrative pitfall ex-
amples such as overfitting behavior, self-defeating reinforcement
loops, and poor decisions that can result from common, single-
shot offline evaluation setups.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the authors must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
RecSys'19, September 16–20, 2019, Copenhagen, Denmark.
© 2019 Copyright is held by the authors. Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6243-6/19/09…$15.00 https://doi.org/10.1145/3298689.3346984

1 An implementation of all the methods and experimental procedures described in
this paper is publicly available at https://github.com/ir-uam/EnsembleBandits.

RecSys’19, September 2019, Copenhagen, Denmark R. Cañamares, M. Redondo and P. Castells

2 Related Work

2.1 Recommender System Ensembles
Hybrid systems have been found to be good means to improve
the performance separately obtained by effective individual rec-
ommendation algorithms. Ensembles are a particular case of hy-
brid approach which regards the algorithms to combine as black
boxes. This has the powerful advantage of allowing the combina-
tion of as many algorithms as we wish, and of any type [4,6,23].
The vast majority of research in this area has focused on running
recommendations only once. There are, however, some studies
that seek to dynamically improve the ensembles [2,3,9,15]. An
important issue in most such prior work is the use of learning
and optimization techniques (bagging, boosting, fusion, random-
ness injection) to compute the best parameter configuration of
complex models. This can potentially increase the execution time
of the ensemble, hindering its scalability in production scenarios.
Moreover, all of them imply the execution, at least once, of all
the combined algorithms in order to identify the best one.

2.2 Bandit Recommender Systems
The application of multi-armed bandit techniques has started to
become popular in the recommender systems field. Work in this
area has used bandit techniques to select the next item to rec-
ommend by considering all the candidate items as arms of the
bandit [14,16,17,25,26]. There is barely any precedent in model-
ing ensemble components as arms, as we explore in this paper.
Closest to our present research is the work by Brodén et al. [5],
though it is developed in non-personalized item-to-item recom-
mendation in a quite specific e-commerce context. Pang et al.
[20] also propose to use bandits as ensembles of algorithms, but
not for recommender systems. And other work that relates ban-
dits and ensembles has focused on combining algorithms that are
bandits, that is, on creating ensembles of bandits [24].

One important application of bandit ensembles is A/B testing
[12,22], where a bandit method automatically decides between
several algorithms based on their previous performance. If one
recommendation algorithm is clearly less effective than the oth-
ers, the bandit ensemble will progressively reduce the traffic it is
assigned. In this line, we may say that bandit ensembles have
been already used for A/B testing to select a winner between
several candidates [11] –such winner is simply the algorithm
that has been selected more times by the ensemble. Bandit A/B
testing implicitly assumes that some of the tested systems will be
called increasingly less often by the bandit, or that we are con-
strained (by whatever environmental conditions) to making an
excluding choice among the alternatives. But this might not be
the case: there may not be a clear winner, or the reward may not
be stationary and the best algorithm in the past is not necessarily
so in the future. And the A/B test traffic may not monotonically
decrease towards zero for all systems but one sought champion.
And we may not have any major deterrent in leaving the ensem-
ble running indefinitely if it happens to be more effective itself
than either of the tested variants. Such conditions motivate the
perspective we explore here.

3 Bandit Recommender System Ensembles
We propose to adapt the multi-armed bandit approach for build-
ing recommender system ensembles. Our proposed bandit for-
mulation of recommender ensembles is as follows:
• The context is the target user to whom a recommendation is

to be delivered.
• The arms are the recommendation algorithms that are com-

bined in the ensemble. When an arm is selected, the corre-
sponding algorithm is run to select one item to be recom-
mended to the target user.

• The reward is 1 if the user is pleased by the recommended
item, and 0 otherwise.

• Arms can be updated after each individual recommenda-
tions, or every certain number (a batch) of recommendations
[21]. In our experiments, we will select target users in a loop
over all users, and update the arms after each such round.
Following the multi-armed approach, the selection of the algo-

rithm to recommend at each step is based on its performance in
the previous cycles in which it has been selected. For instance, in
ε-greedy [23], the algorithm (arm) that has the highest average
reward (i.e. the precision) so far is selected with probability 1 − ε,
and with probability ε an algorithm is selected uniformly at ran-
dom regardless of its historical effectiveness. For Thompson sam-
pling [8], the posterior of the unknown reward distribution of each
arm is modeled as a Beta(𝛼𝑎, 𝛽𝑎) distribution, where 𝛼𝑎 and 𝛽𝑎 are
the number of successful and unsuccessful recommendations of
algorithm 𝑎, respectively. A value 𝑝𝑎 is drawn for each arm from
its Beta distribution, and the arm with highest value is selected.

Note that the previous bandit reformulation can be employed
to transform any multi-armed bandit solution into a recom-
mender ensemble. In the next section we specifically chose to
implement the previous explained popular bandits (Thompson
sampling and ε-greedy) to verify our proposal, but any other
bandit method could be used following the previous approach.

4 Experiments

4.1 Data
In order to verify the performance of the bandit recommender
ensembles that we have proposed in the previous section, we run
the algorithms using data from the MovieLens 1M dataset [18],
containing 1,000,209 ratings by 6,040 users to 3,706 movies. We
binarize the ratings by mapping values 1-3 to 0 and 4-5 to 1.

4.2 Algorithms
In order to be able to closely examine the behavior of our bandit
ensembles, we shall test the combination of just three recom-
mendation algorithms: two well-performing collaborative filter-
ing methods (kNN [19] and matrix factorization [13]), and non-
personalized most-popular recommendation, which represents a
good option when the data is too sparse to obtain any reliable
personalized signal. As a baseline ensemble we implement an
alternative dynamic ensemble, which we apply to the same three
algorithms. At each point in time, this ensemble applies an of-
fline evaluation of the combined algorithms –by randomly split-

Multi-Armed Recommender System Bandit Ensembles RecSys’19, September 2019, Copenhagen, Denmark

ting the input data collected so far into training and test subsets–
and chooses the best one (in Precision@1) to produce the next
round of recommendations –now taking all the available data as
input training. We will also compare our approach, as a point of
reference, to the individual algorithms combined in the ensem-
bles, as well as random recommendation.

We tune the configuration of our bandit ensembles by grid
search. Thus, we initialize the Thompson sampling with 𝛼𝑎 =

1,000 and 𝛽𝑎 = 1 for all the three combined recommendation al-
gorithms, and ε = 0.1 for the ε-greedy bandit. We configure kNN
with cosine similarity and all users as neighbors, for simplicity;
and we take the configuration of matrix factorization reported in
[7] for MovieLens 1M: 𝛼 = 1, 𝜆 = 0.1, 𝑘 = 20, and 20 iterations.

4.3 Offline Evaluation Approach
Our evaluation approach simulates an environment where users
discover and rate the items that recommender systems iterative-
ly suggest them, providing new feedback that the systems can
incorporate as input in the next round.

We start from an initial training set including 5% of the availa-
ble ratings sampled uniformly at random (equivalent to ~10 ratings
per user). We run the evaluated recommender system (ensemble
or standalone algorithms) with the training set as input, and use
the remaining 95% of the data as the test set to simulate user feed-
back. At each round (epoch) of the simulation, the system recom-
mends one item to each user (bandits pulling an arm per user); for
each user, the resulting reward is 1 if a positive rating is available
in the test set for the recommended item, and 0 otherwise. If a
(positive or negative) rating was available, it is added to the train-
ing set, and the cycle goes on. If not, we keep track and take care
that the same item is not recommended again to the same user.
Note that each recommender system has its own training, test and
exclusion sets, since they are built from the user feedback to their
own specific recommendations. Thus, only the initial training set
is common to all the compared systems. The algorithms within
ensembles do share the same data, collected by the ensemble.

For Thompson sampling, the value of the parameters 𝛼𝑎 and
𝛽𝑎 corresponding to each algorithm 𝑎 (popularity, kNN and ma-
trix factorization) is updated after each epoch, by incrementing
them in the number of, respectively, hits and misses that 𝑎 has
obtained in the epoch. Since one epoch implies recommending
an item for each user, the number of hits and misses can be in
the order of thousands. For this reason we initialize 𝛼𝑎 as 1,000,
as a highly optimistic initialization promoting exploration in the
early stages, in order to avoid the bandit getting stuck with the
algorithm that happens to obtain more hits in the first few
epochs. Analogously, the ε-greedy bandit updates the hit rate of
each candidate algorithm after each epoch.

4.4 Results
Figure 1 shows the results for the first 200 epochs. The number
of epochs corresponds to the number of recommended items
suggested to each user, since the recommender systems only
recommend one item per epoch in our setting. Thus, we consider
that 200 recommendations per user is a reasonable snapshot point
to compare the different approaches. The performance of each
recommender system (ensembles and standalone algorithms) is

computed as the cumulative recall achieved up to each epoch.
That is, as the number of successful recommendations, divided
by the total number of relevant ratings in the initial test set.

We can see that the bandit ensembles clearly outperform all
other alternatives, which in fact work below what one might
expect due to their myopic nature, targeting optimal one-shot
recommendations. ε-greedy seems to do slightly better than
Thompson sampling.

The collaborative filtering algorithms are not able to do better
than recommendation by popularity. This can be attributed to
their vulnerability to the initial data sparsity, while non-
personalized popularity gets an advantage in the first few itera-
tions, when there is not enough data for exploitation-oriented
collaborative filtering to produce reliable personalized recom-
mendations. After the first 50 recommendations we can see that
kNN and matrix factorization start to catch up (their slope is
steeper) but it is not enough for outperforming popularity.

The poor performance of the non-bandit ensemble may come
at some surprise. The ensemble appears to select matrix factori-
zation all the time, which seems to be a bad choice: the matrix
factorization algorithm is optimal for a single recommendation,
but shows to be quite suboptimal as a cyclic recommendation
approach. An additional reason for the ensemble to stick to this
selection can be attributed to a feedback loop effect [10]: since
the ensemble is building its own training set from the recom-
mendations of matrix factorization, an offline evaluation (used
by the ensemble to select a winner) using such training data (via
a random split) is biased in favor of the algorithm that collected
the ratings. We will further analyze this phenomenon in the next
section, showing how the ensemble is strongly dependent on the
winner of the first iteration.

In order to better understand the behavior of our bandit en-
sembles, Figure 2 shows the fraction of users for whom each of
the three combined algorithms has been selected by the ensem-
ble to produce the recommendation at each epoch. We can see
that popularity is clearly dominant in the first iterations, but as
the matrix factorization starts to improve, the bandit ensembles
gradually increase the selection of the latter. kNN, however,
seems to be rarely selected by the ensembles even though, as a
standalone iterative recommender, it is better than matrix factor-
ization. This comes to show that bandit ensembles are able to
achieve non-obvious enhanced optimizations.

The behavior observed in Figure 2 also illustrates the fact that
keeping more than one algorithm, at the appropriate traffic ratio,

Figure 1: Incremental recall (𝒚 axis) vs. number of recom-
mendations (𝒙 axis) for the tested recommendation algo-
rithms, including the bandit ensembles.

0

0.1

0.2

0.3

0.4

0 100 200

C
u

m
u

la
ti

ve
 r

ec
al

l

Epoch

Thompson sampling bandit

 -greedy bandit

Most popular

User-based kNN

Matrix factorization

Dynamic ensemble

Random recommendation



RecSys’19, September 2019, Copenhagen, Denmark R. Cañamares, M. Redondo and P. Castells

Figure 3: Incremental recall (𝒚 axis) vs. number of recom-
mendations (𝒙 axis) for the baseline ensemble and the al-
gorithms it combines. Each graph corresponds to one dif-
ferent execution of the offline experiment.

0

0.05

0.1

0.15

C
u

m
u

la
ti

ve
 r

ec
al

l

 Most popular

 User-based kNN

 Matrix factorization

 Dynamic ensemble

 Random recommendation

0

0.05

0.1

0.15

0 50

C
u

m
u

la
ti

ve
 r

ec
al

l

Epoch

 Most popular

 User-based kNN

 Matrix factorization

 Dynamic ensemble

 Random recommendation

0 50Epoch

0
0.05

0.1
0.15

0 50

C
u

m
u

l
at

iv
e

re
ca

ll Most popular Dynamic ensemble

 User-based kNN

 Matrix factorization

Random recom-
mendation

can be better than choosing only one. This justifies the employ-
ment of bandit ensembles as alternative to conventional test A/B
experiments, leaving thus the selection of the candidates in the
hands of the bandit ensemble. If there is a clear winner, the bandit
will reduce the fraction of users for whom other options are se-
lected to a minimum, as happens with kNN in our experiments.

We also see that even though our two bandits soon favor ma-
trix factorization as a preferred algorithm, the initial reliance on
popularity, albeit short, seems to not only directly improve the
ensemble, but also considerably (indirectly) enhance the behav-
ior of matrix factorization itself thereafter (by collecting a richer
pool of user feedback as input data), compared to an exclusive
and persistent reliance on matrix factorization alone, as does the
dynamic ensemble. The continued (albeit small) fraction of alter-
nation among algorithms, can also help in the same fashion.

4.5 Overfitting and Reinforced Feedback Loop
The tendency of the baseline ensemble to select matrix factoriza-
tion over the two other alternatives can be explained because
matrix factorization is likely very good, in an offline evaluation,
at (over)fitting whatever data has been collected. To provide fur-
ther insights on the feedback loop effects in the baseline ensem-
ble, we run additional experiments where we reduce the initial
split ratio to 1% data for training, thus creating an even colder
start with just 1 or 2 ratings per user in the initial training set. In
such conditions, the variance of the initial random selection of
the training set produces different winners in the dynamic non-
bandit ensemble at the first epoch, so that matrix factorization is
not always the selected algorithm in the first iteration.

Figure 3 shows different executions of the baseline ensemble
and the basic algorithms with different random samples of the
initial data. We zoom into the first 50 epochs to see the initial
behavior of the ensemble that determines its subsequent evolu-
tion. While popularity, kNN, and matrix factorization behave
quite the same in the different executions, the baseline ensemble
switches between them in different instances of the same experi-
ment. In most of the cases, the algorithm selected in the first iter-
ation is kept thereafter by the ensemble, confirming the feedback
loop effect. If the winner happens to be kNN or matrix factoriza-
tion, the ensemble shall underperform compared to popularity.

There are –less frequent– situations, however, when the
winner changes along the cycles, as is the case in the bottom-

right graph of Figure 3. This only happens in the first few itera-
tions though, and the winner stabilizes after epoch 5. Note, on
the other hand, that in no situation the ensemble outperforms
the best standalone algorithm (popularity).

One might consider that this dynamic ensemble is just a bad
idea. Note however that it represents the way an algorithm
would be selected in a typical manual offline evaluation method-
ology, as has been widespread practice in the field to date. In
contrast, the bandit ensembles seem not to suffer from this feed-
back loop bias, and are able to obtain better results than any of
the combined algorithms achieve separately.

5 Conclusions
We have explored the incorporation of multi-armed bandit tech-
niques to the design of dynamic recommender ensembles that
select the best among several algorithms based on the previous
performance of each candidate. We have shown that the bandit
approach is empirically effective, improving not only the indi-
vidual algorithms, but also other ensemble alternatives. In par-
ticular, the bandit approach does not suffer from the feedback
loop bias that is evidenced in decisions based on offline evalua-
tion with logged data.

An additional important advantage of bandit ensembles is
their low computational cost: they need to run just one selected
recommendation algorithm, and not all the others. The savings
can be considerable when the combined algorithms are computa-
tionally involved, and the ensemble size is large [4].

ACKNOWLEDGMENTS
This work was partially supported by the Spanish Government
(grant nr. TIN2016-80630-P).

 -greedy Thompson sampling

Figure 2: Fraction of users that the -greedy bandit (left)
and the Thompson sampling bandit (right) have selected
to be recommended by each of the basic algorithms that
compose the bandit.

0

0.5

1

0 100 200

Epoch

0

0.5

1

0 100 200

Tr
af

fi
c

ra
ti

o

Epoch

00.51

0 100 200
 Most popular User-based kNN Matrix factorization

Multi-Armed Recommender System Bandit Ensembles RecSys’19, September 2019, Copenhagen, Denmark

REFERENCES
[1] G. Adomavicius and A. Tuzhilin (2005). Toward the next generation of recom-

mender systems: A survey of the state-of-the-art and possible extensions. IEEE
Transactions on Knowledge and Data Engineering, 17, 6 (June 2005), 734–749.

[2] F. Aksel and A. Birtürk (2010). An Adaptive Hybrid Recommender System that
Learns Domain Dynamics. In International Workshop on Handling Concept
Drift in Adaptive Information Systems: Importance, Challenges and Solutions
(HaCDAIS-2010) at the European Conference on Machine Learning and Princi-
ples and Practice of Knowledge Discovery in Databases (ECML PKDD 2010).
Barcelona, Spain, 49–56.

[3] A. Bar, L. Rokach, G. Shani, B. Shapira and A. Schclar (2013). Improving Sim-
ple Collaborative Filtering Models Using Ensemble Methods. In 11th Interna-
tional Workshop on Multiple Classifier Systems (MCS 2013). Nanjing, China, 1–
12.

[4] R. Bell, Y. Koren and C. Volinsky (2007). The bellkor solution to the Netflix
prize. KorBell Team’s Report to Netflix (2007).

[5] B. Brodén, M. Hammar, B. Nilson and D. Paraschakis (2018). Ensemble Rec-
ommendations via Thompson Sampling: an Experimental Study within e-
Commerce. In Proceedings of the 23rd International Conference on Intelligent Us-
er Interfaces (IUI 2018). Tokyo, Japan, 19–29.

[6] R.Burke (2002). Hybrid Recommender Systems: Survey and Experiments. User
Modeling and User-Adapted Interaction, 12, 4 (November 2002). Kluwer Aca-
demic Publishers Hingham, MA, USA, 331–370.

[7] R. Cañamares and P. Castells (2017). A Probabilistic Reformulation of
Memory-Based Collaborative Filtering – Implications on Popularity Biases. In
Proceeding of the 40th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR 2017). ACM, New York, USA,
215–224.

[8] O. Chapelle and L. Li (2011). An empirical evaluation of Thompson Sampling.
In Proceedings of Neural Information Processing Systems (NIPS 2011). Curran
Associates, Inc., Red Hook, NY, USA, 2249–2257.

[9] S. Dooms (2013). Dynamic generation of personalized hybrid recommender
systems. In Proceedings of the 7th ACM Conference on Recommender Systems
(RecSys 2013). Hong Kong, China, 443–446.

[10] A. Gilotte, C. Calauzènes, T. Nedelec, A. Abraham and S. Dollé (2018). Offline
A/B Testing for Recommender Systems. In Proceedings of the 11th ACM Inter-
national Conference on Web Search and Data Mining (WSDM 2018). ACM, New
York, NY, USA, 198–206.

[11] D. Hill, H. Nassif, Y. Liu, A. Iyer and S. Vishwanathan (2017). An Efficient
Bandit Algorithm for Realtime Multivariate Optimization. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD 2017). Halifax, NS, Canada, 1813–1821.

[12] R. Kohavi, R. Longbotham, D. Sommerfield and R. Henne (2009). Controlled
experiments on the web: survey and practical guide. Data Mining and
Knowledge Discovery, 18, 1 (February 2009), 140–181.

[13] Y. Hu, Y. Koren and C. Volinsky (2008). Collaborative Filtering for Implicit
Feedback Datasets. In Proceedings of the 8th IEEE International Conference on Da-
ta Mining (ICDM 2008). IEEE Computer Society, Washington, DC, USA, 15–19.

[14] J. Kawale, H. H. Bui, B. Kveton, L. Tran-Thanh and S. Chawla (2015). Efficient
Thompson Sampling for Online Matrix-Factorization Recommendation. In
Proceedings of Neural Information Processing Systems (NIPS 2015). Curran As-
sociates, Inc., Red Hook, NY, USA, 1297–1305.

[15] P. Kouki, S. Fakhraei, J. Foulds, M. Eirinaki and L. Getoor (2015). HyPER: A
Flexible and Extensible Probabilistic Framework for Hybrid Recommender
Systems. In Proceedings of the 9th ACM Conference on Recommender Systems
(RecSys 2015). ACM, New York, NY, USA, 99–106.

[16] L. Li, W. Chu, J. Langford and R. Schapire (2010). A contextual-bandit ap-
proach to personalized news article recommendation. In Proceedings of the 19th
International Conference on World Wide Web (WWW 2010). ACM, New York,
NY, USA, 661–670.

[17] S. Li, A. Karatzoglou, and C. Gentile (2016). Collaborative Filtering Bandits. In
Proceedings of the 39th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR 2016). ACM New York, NY, USA,
539–548.

[18] F. M. Maxwell and J. A. Konstan (2015). The MovieLens Datasets: History and
Context. ACM Transactions on Interactive Intelligent Systems, 5, 4 (December
2015).

[19] X. Ning, C. Desrosiers and G. Karypis (2015). A Comprehensive Survey of
Neighborhood-Based Recommendation Methods. In F. Ricci, L. Rokach and B.
Shapira (Eds.), Recommender Systems Handbook (2nd ed.). Springer, New York,
NY, USA, 37–76.

[20] K. Pang, M. Dong, Y. Wu and T. Hospedales (2018). Dynamic Ensemble Active
Learning: A Non-Stationary Bandit with Expert Advice. In Proceedings of the
24th International Conference on Pattern Recognition (ICPR 2018). IEEE Com-
puter Society, Washington, DC, USA, 2269–2276.

[21] V. Perchet, P. Rigollet, S, Chassang and E. Snowberg (2016). Batched Bandit
Problems. Annals of Statistics, 44, 2 (April 2016), 660–681.

[22] D. Siroker and P. Koomen (2015). A/B testing: the most powerful way to turn
clicks into customers. John Wiley & Sons Inc, Hoboken, NJ, USA, 2015.

[23] R. Sutton and A. Barto (2018). Reinforcement Learning: An Introduction (2nd
ed.). MIT Press, Cambridge, MA, USA, 2018.

[24] L. Tang, Y. Jiang, L. Li and T. Li (2014). Ensemble contextual bandits for per-
sonalized recommendation. In Proceedings of the 8th ACM Conference on Rec-
ommender Systems (RecSys 2014). Foster City, CA, USA, 73–80.

[25] Q. Wang, C. Zeng, W. Zhou, T. Li, S. S. Iyengar, L. Shwartz and G. Grabarnik
(2019). Online Interactive Collaborative Filtering Using Multi-Armed Bandit
with Dependent Arms. IEEE Transactions on Knowledge and Data Engineering,
31, 8 (August 2019), 1569–1580.

[26] X. Zhao, W. Zhang and J. Wang (2013). Interactive Collaborative Filtering. In
Proceedings of the 22nd ACM International Conference on Information and
Knowledge Management (CIKM 2013). ACM, New York, NY, USA, 1411–1420.

